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Abstract—Existing software-history techniques represent
source-code evolution as an absolute and unambiguous mapping
of lines of code in prior revisions to lines of code in subsequent
revisions. However, the true evolutionary lineage of a line of
code is often complex, subjective, and ambiguous. As such,
existing techniques are predisposed to, both, overestimate and
underestimate true evolution lineage. In this paper, we seek to
address these issues by providing a more expressive model of code
evolution, the fuzzy history graph, by representing code lineage
as a continuous (i.e., fuzzy) metric rather than a discrete (i.e.,
absolute) one. Using this more descriptive model, we additionally
provide a novel multi-revision code-history analysis — fuzzy
history slicing. In our experiments over three real-world software
systems, we found that the fuzzy history graph provides a tunable
balance of precision and recall, and an overall improved accuracy
over existing code-evolution models. Furthermore, we found that
the use of such a fuzzy model of history provided improved
accuracy for code-history analysis tasks.

Index Terms—software engineering; computer aided software
engineering; software maintenance; reasoning about programs;

I. INTRODUCTION

The analysis of source-code evolution provides automatic
support for a variety of software-engineering tasks, e.g., identi-
fying bug-introducing changes [49], recommending developers
to fix bugs (e.g., [42], [48]), identifying changes in third-party
APIs [52], and discovering code clones [6]. Furthermore, de-
velopers often need to examine and understand code evolution
for a wide variety of purposes, requiring high effort [12], [37].

While code-history analysis techniques support developers
for numerous tasks, their accuracy is still limited by the
accuracy of their underlying code-history models. Multiple
techniques have been proposed to model and analyze the
evolution of source code at the line-of-code level of granularity
(e.g., [10], [11], [44], [47]). Yet, existing techniques present
potential limitations, in terms of modeling too many false
positives (low precision) or too many false negatives (low
recall), respectively, when compared with true code history.

In this paper, we follow the intuition that such limitations
in code history models originate in the fact that existing
models map lines of code in prior revisions to lines of
code in subsequent revisions in an absolute and unambiguous
manner. Consider the following output of the diff command:

5,7c5,7
< if ((a>0)&&(a<=10)) {
< // in range
< // valid
---
> if ((a>0)&&
> (a<=10)) {
> // in valid range

Given this textual differ-
encing result, existing tech-
niques follow one of two ap-
proaches. Some existing his-
tory analyses (e.g., [55]) con-
servatively represent the lin-

eage of lines of code — mapping each and every candidate line
of code in the older revision to each and every candidate line of
code in the newer revision. In the example diff output, these
analyses would assess that every line (i.e., lines 5, 6, and 7) in
the prior revision absolutely evolved into every line (i.e., lines
5, 6, and 7) in the subsequent revision. Other techniques (e.g.,
[10], [44], [47]) further analyze such results to disambiguate
each line in the prior revision to each line in the subsequent
revision. In the example diff output, these analyses may
assess that line 5 in the prior revision evolved to line 5 in the
subsequent revision, and line 6 in the prior revision evolved
to line 7 in the subsequent revision; however the backward
history of line 6 in the subsequent revision and the forward
history of line 7 in the prior revision are lost.

As a result, existing approaches emphasize either precision
or recall, but present limitations in the opposite metric. More-
over, such errors typically are compounded for analyses per-
formed over multiple revisions, which can lead to substantially
inaccurate results.

In this paper, we propose the idea that, in truth, lines of code
evolve into other lines to varying degrees — instead of in an
absolute manner. Therefore, we present a novel approach for
modeling and analyzing code history in a fuzzy manner. We
present the fuzzy history graph as a model of fine-grained code
history that represents the varying degrees to which individual
lines of code evolve into others. Additionally, we present fuzzy
history slicing as an automatic code-history-analysis technique
that takes advantage of the fuzzy history graph to improve
the accuracy of a fundamental task in code history analysis:
identifying all the revisions of a set of lines of code.

Through our experiments in this paper, we found that the
fuzzy history graph provided higher accuracy than existing
models of fine-grained code history. In addition to the im-
proved overall accuracy, the fuzzy history graph also provided
a tunable balance of both precision and recall — as opposed
to existing models that emphasize only one of the two. We
also found that such accuracy improvement led to higher
accuracy in code-history analysis tasks. In our experiments,
a common code-history analysis task — identifying bug-
introducing changes with the SZZ approach [49] — provided
higher accuracy with an underlying fuzzy history graph than
with existing, absolute code-history models. In all, the fuzzy
history graph and fuzzy history slicing allowed for: (1) multi-
revision fine-grained analyses of code history that provided a
flexible balance between precision and recall, and (2) higher
accuracy in multi-revision code-history analysis tasks.
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What are the corresponding lines, in other 
revisions, that changed this line of code?

      Answer with the All-to-All model
      Answer with the One-to-One model

      Actual corresponding lines (in bold)

Array firstArray = getFirstArray();
Array secondArray = getSecondArray();
// Get union with maximum size
Array u = getSetUnion(firstArray, secondArray, 50);
print(u);

Array firstArray = getFirstArray();
Array secondArray = getSecondArray();
// Get union with maximum size
float maxSize = 50;
// Get the union of arrays
Array u = getUnion(
  firstArray,secondArray,maxSize);
print(u);

Array a = getFirstArray();
Array b = getSecondArray();

a = sortArray(a);
b = sortArray(b);
float m = 50; // max size
// Get the array union
Array u = getUnion(a, b, m);
print(u);

Array a;
for (int i=0; i<10; i+=2)
   a.add(i);

Array b;
for (int i=20; i>0; i--)
   b.add(i);

a = sortArray(a);
b = sortArray(b);
float m = 50; // max size
// Get the array union
Array u = getUnion(a, b, m);
print(u);

Array a = {0,2,4,6,8};

Array b;
for (int i=20; i>0; i--)
   b.add(i);

a = sortArray(a);
b = sortArray(b);
float m = 50; // max size
// Get the array union
Array u = getUnion(a, b, m);
print(u);

Fig. 1: Code evolution example

This paper provides the following research contributions:
• A novel model (fuzzy history graph) and analysis (fuzzy

history slicing) of fine-grained code history that preserve
and account for the degree to which lines of code evolve.

• Novel algorithms to perform fuzzy, fine-grained modeling
and analysis of code history that improve the accuracy of
current fine-grained code history models and analyses.

• An evaluation, composed of two experiments, that show:
that the fuzzy history graph improved the accuracy of
existing fine-grained code-history models, and that such
accuracy improvement led to higher accuracy in performing
code-history analysis tasks.

II. MOTIVATION AND BACKGROUND

Many software-engineering tasks benefit from fine-grained
code-evolution analyses. Multiple studies found industry de-
velopers to often require the study of the history of fine-
grained code selections [37], for a wide variety of pur-
poses [12], such as identifying the rationale of code [35].
In addition, multiple automatic code-evolution analyses have
been proposed to support developers in diverse tasks, such as
automatic identification of changes in third-party APIs [52],
automatic discovery of code clones [6], automatic identi-
fication of bug-introducing changes (SZZ) [49], automatic
recommendations of developers to fix bugs (e.g., [42], [48]),
and automatic prediction of future bugs in code locations [41].
As such, the accuracy of code evolution models and analyses
impacts both researchers and practitioners in a variety of tasks.

Running Example. To illustrate such a fine-grained multi-
revision code-evolution analysis and the uses to which it
could be applied, consider the source-code history included
in Figure 1. This example program evolved through five
revisions. Lines that changed between consecutive revisions
are marked with connected rectangles.

The example task that we pose is answering the set of lines
throughout the code history that contributed to the current
revision of Line 4 in Revision 5. To perform such an analysis,
each revision can be compared, and the corresponding lines
in the previous revision may be identified through manual
inspection. Those lines that match can be documented, and
the pairwise analysis can continue: revision-pair by revision-
pair, until the beginning of the history is reached or until all
trajectories reach their earliest origin.

Ground Truth (Human Assessed)

Rev5Rev4Rev3Rev2Rev1 Rev5Rev4Rev3Rev2Rev1

slicing
criterion

(a) Ground Truth History Graph (b) Ground Truth History Slice

Fig. 2: Human-assessed history graph (a) and slice (b). On
the slice (b), solid edges and solid nodes denote changes
contributing to the slicing criterion; dashed edges and hollow
nodes denote corresponding but unchanged lines.

History Models and History Analyses. In order to demon-
strate and motivate the need for more descriptive models of
source-code history and analyses thereof, we refer to our
earlier work in which we defined an explicit model of source-
code history (i.e., a history graph) and a dependence analysis
that operates on it (i.e., history slicing). In past work, we
defined the concept of history slicing [46], [47] to automate
analysis of the correspondence of lines and changes across
multiple revisions of code. The result — a history slice —
of the history slicing process is defined as the complete and
minimal history across all revisions of the queried set of lines
of code. In keeping with the slicing tradition, the queried lines
of code for a particular revision is called the slicing criterion.

For history slicing, a fine-grained model of the evolution of
the code is needed. We call such a fine-grained, multi-revision
model of the code history, a history graph. The history graph
maps the corresponding lines between each two consecutive
revisions, across any epoch of the code history. Once the
history graph is constructed (either a priori or on-demand),
the history slice can be computed for any slicing criterion by
traversing the graph (in either time direction).

Example. Figure 2(a) depicts a history graph for the program
history shown in Figure 1. This history graph was created
without any automation and was assessed by a person from
one of our empirical studies (described later in Section IV).
Each column represents a revision, and in each column the
nodes represent lines of code. Between each adjacent pair
of revisions, edges are drawn to represent evolution of lines
of the incident nodes. Solid edges are drawn to represent
changed and corresponding lines, and dotted edges represent
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All-to-All (Existing Automatic Technique)

(a) All-to-all History Graph (b) All-to-all History Slice

Fig. 3: Existing all-to-all history graph and slice. Slice has
high recall but low precision.

unchanged and corresponding lines.
On this graph, the slicing criterion is defined as Line 4 in

Revision 5. The computation of the history slice is depicted
in Figure 2(b). In this figure, the analysis is performed as a
backward (in time) analysis, and the edges are now depicted
as directional to convey the traversal of the reachability
analysis. Nodes that represent changed lines are depicted as
a solid, red dot — these constitute the resulting history slice.
Nodes that did not change, but are on the trajectory of the
slice, are depicted as open, red nodes.
As our example demonstrates, people can manually con-

struct a history graph and perform the history-slicing analysis.
Note that the code history may be assessed differently by
another individual — such manual assessments are subject
to both human fallibility and differences of opinion. In truth,
often such histories can be subject to debate, and no authori-
tative truth is possible. More importantly, the manual task of
computing the history of lines of code can be time consuming.

Existing Automated All-to-All History Analyses. To help
automate such history analyses, tools and techniques have been
developed and used. A commonly used tool — diff— can
be used to determine which lines changed from one revision
to another for any pair of files. Such continuous blocks of
changed code are called change hunks. For example, diff
computes this difference between Revision 3 and Revision 4:
1,8c1,7
< Array a = getFirstArray();
< Array b = getSecondArray();
<
< a = sortArray(a);
< b = sortArray(b);
< int m = 50; // max size
< // Get the array union
< Array u = getUnion(a, b, m);

---
> Array firstArray = getFirstArray();
> Array secondArray = getSecondArray();
> // Get union with maximum size
> int maxSize = 50;
> // Get the union of arrays
> Array u = getUnion(
> firstArray,secondArray,maxSize);

Using such diff results, researchers created models of
history and analyses on them by encoding the potential for
all lines in the prior revision to have changed into all lines in
the subsequent revision for each change hunk. For example,
Zimmermann et al. [55] proposed a model, called annotation
graphs. We generalize all such models that map all lines of
the prior revision to all lines of the later revision of a change
hunk — we refer to them as All-to-all History Graphs.

The all-to-all history graph reduces the number of false neg-
atives (i.e., not mapping lines of code that actually did evolve
one into the other) by performing conservative mapping. As a
consequence, such all-to-all models can be expected to provide
high recall, although they may also provide low precision.
Moreover, such conservative mapping can cause compounding
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(a) One-to-one History Graph (b) One-to-one History Slice

Fig. 4: Existing one-to-one history graph and slice. Slice has
high precision but low recall.

imprecision when performing reachability analyses on the
graph for history slicing.

Example. For our running example, Figure 3(a) depicts the
history graph constructed using an all-to-all strategy to map
lines in the older revision to lines in the newer revision for
each change hunk. Compared to the manually assessed (but
time consuming) model, in Figure 3(b) we observe that the
all-to-all analysis produced a result that wholly subsumes
the correct lines in each revision. However, as expected, it
includes many more lines in each revision, particularly for
the oldest revision that contains all lines except one. Addi-
tionally, the number of revisions that would be recommended
for examination is also an over-approximation. As a result,
automatic analyses to assess risk for bugginess based on
code history (e.g., [41]) would overapproximate the risk of
this code selection — since it would be reported as being
changed five times, even though it was changed only three
times. Similarly, automatic analyses to recommend expert
developers for code based on its history (e.g., [21]) would
also overapproximate including Chris as an expert (as much
as Bob), even if Chris never changed the code selection.

Existing Automated One-to-One History Analyses. To ad-
dress the problems introduced by the over-approximate nature
of all-to-all history models, researchers developed advanced
line-mapping techniques that allow for the disambiguation of
lines in change hunks (e.g., [9]–[11], [44], [46], [47], [51]).
The methods by which each such technique resolves which
lines in the older revision correspond to which lines in the
newer revision may differ, however a common technique is to
use an optimization algorithm to find the most optimal one-to-
one mapping. In this work, we generalize history models that
are based on such one-to-one line mapping for change hunks
— we refer to these as One-to-one History Graphs.

The one-to-one history graph reduces the number of false
positives (i.e., not mapping lines of code that are not truly
associated). As a consequence, such one-to-one models can
be expected to provide high precision, although they may
also provide low recall. Moreover, the errors of under-approx-
imation introduced by the one-to-one models can cause com-
pounding false-negative errors when performing reachability
analyses on the graph for slicing.

Example. For our running example, Figure 4(a) depicts the
history graph constructed using a one-to-one strategy to map
lines in the older revision to lines in the newer revision



for each change hunk. Compared to the manually assessed
model, in Figure 4(b) we observe that the one-to-one analysis
produced a result that contains no spurious lines for any re-
vision. However, as expected, it excludes many lines in each
revision that should have been included. Additionally, the
set of revisions that would be recommended for examination
is also an under-approximation. Thus, automatic analyses to
assess risk for bugginess based on code history (e.g., [41])
would underapproximate the risk of this code selection —
since it would be reported as being changed only once,
even though it was changed three times. Likewise, automatic
analyses to recommend expert developers for code based on
its history (e.g., [21]) would also underapproximate including
only Bob as an expert — and therefore missing Alice, who
also contributed to the selected code’s history.
For each type of automatically generated history graph —

all-to-all and one-to-one — errors are felt, and moreover, those
errors tend to compound when used for multi-revision analyses
such as history slicing. Given this background, our goal is to
enable accurate multi-revision analyses.

III. FUZZY HISTORY ANALYSIS

In this paper, we follow the intuition that code evolution
has a fundamental fuzzy nature. That is, there are varying
degrees to which lines of code evolve in subsequent revisions
— as opposed to the mapping of lines between revisions being
binary (mapped or not). This intuition was further strength-
ened by the human-assessed, manual line mappings that we
encountered. Moreover, there were sometimes uncertainty by
individuals performing manual mapping, or dispute between
multiple individuals as to the correct mapping.

As such, we created Fuzzy History Slicing as an automated
analysis that is based on a fuzzy model of code evolution,
which we naturally call the Fuzzy History Graph. These tech-
niques have the goal of addressing the over-approximation er-
rors found with all-to-all analyses and the under-approximation
errors found with one-to-one analyses. We create a fuzzy
approach to history slicing [46], [47] that can account for
the indeterminate nature and degree of evolution of lines
from one revision to the next. While past work showed the
productivity improvements provided by history slicing [47],
this paper studies the accuracy of fine-grained code-history
analysis, contributing: (1) a novel approach to model fine-
grained code-history that recognizes the fuzzy nature of code
evolution; (2) a novel algorithm to compute such fuzzy code
history; (3) a novel approach to analyze fine-grained code
history that leverages the different extents to which lines of
code evolve; (4) an algorithm to perform the fundamental code
history operation of obtaining the fuzzy evolution of a set of
lines of code; and evaluations of the accuracy improvement
provided by the novel fuzzy code history analysis for: (5)
single code evolutions, and (6) complete code histories.

Example. Before defining fuzzy history analysis, we return
to our running example. Figure 5(a) depicts the fuzzy history
graph that was constructed by assessing the degree to which
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(a) Fuzzy History Graph (b) Fuzzy History Slice

Fig. 5: Novel fuzzy history graph and slice. Slice allows for
tuning precision and recall in a way that is more accurate than
absolute techniques.

each line in the older revision is similar to each line in the
newer revision. Darker lines represent a strong correspon-
dence, and lighter lines represent weaker correspondence.
Figure 5(b) demonstrates a fuzzy history slice computed on
the fuzzy history graph. The lines in each revision that are
included in the fuzzy history slice are colored solid red, and
their membership values are represented by the saturation of
those nodes.We observe that among the lines in each revision
with the highest membership, these more strongly agree with
the human-assessed slice shown in Figure 2. Moreover, the
revisions that would be recommended for examination also
more strongly match the human-assessed revisions.

Fuzzy History Slicing Approach. The approach for perform-
ing fuzzy history slicing involves three processes.
Select Fuzzy History Slicing Criterion. In this process, a user
or an automated analysis selects the fuzzy history slicing
criterion that represents the lines of code and revisions of
interest. The fuzzy history slicing criterion is specified as a
fuzzy set that is composed of 〈line, starting revision, ending
revision〉 tuples. Each tuple represents a line of code of interest
that is characterized by the two revisions of the program
between which the history analysis is requested for that line.
A fuzzy history slicing criterion can include any set of lines
of code, contiguous or not, from any set of files and revisions.
Build Fuzzy History Graph. This process creates our novel
fine-grained model of code evolution, the fuzzy history graph,
by analyzing the revision control system. Following our in-
tuition that lines of code evolve into other lines to varying
degrees, the fuzzy history graph includes a measure of the
degree to which each older line became a new one.

As we described in Figure 5, and similarly to previous
fine-grained code-evolution models, the fuzzy history graph
has the shape of a multipartite graph. Each part represents
a revision, each node represents a line of code, each edge
represents a mapping between incident line nodes, and each
edge has a weight assigned (or membership function) that
estimates the the degree to which an older line became a new
one. Edge weights can be computed in multiple ways, and
different approaches to computing them can inform different
analyses of fuzzy code evolution. The fuzzy history graph can
be constructed once and then updated for every new revision
of the code, and it can also be reused for different fuzzy-
history-slice analyses.



Algorithm 1 Build Fuzzy History Graph
1: procedure FUZZYMAPREVISIONS(RevisionL,RevisionR)
2: Mapped ← mapUnchangedLines(RevisionL,RevisionR)
3: for each 〈LinesL, LinesR〉 ∈ getChangeHunks(RevisionL,RevisionR) do
4: Mapped ← Mapped ∪ FuzzyMapLines(〈LinesL, LinesR〉)
5: end for
6: return Mapped
7: end procedure
8: procedure FUZZYMAPLINES(〈LinesLeft, LinesRight〉)
9: MappedL ← {∅}

10: for each lineL ∈ LinesLeft do
11: MappedL ← MappedL ∪ FuzzyMapLine(lineL, LinesRight)
12: end for
13: MappedR ← {∅}
14: for each lineR ∈ LinesRight do
15: MappedR ← MappedR ∪ FuzzyMapLine(lineR, LinesLeft)
16: for each 〈leftR, rightR,weightR〉 ∈ MappedR do
17: if 〈rightR, leftR〉 ∈ MappedL then
18: 〈leftL, rightL,weightL〉 ← MappedL.get(〈rightR, leftR〉)
19: MappedL.update(〈leftL, rightL〉,max(weightL,weightR))
20: end if
21: end for
22: end for
23: return MappedL
24: end procedure
25: procedure FUZZYMAPLINE(〈l, LinesRight〉)
26: Candidates ← {〈{∅}, 0〉}
27: for i ← 0,MAX CONCATS do
28: NewCandidates ← {∅}
29: for each 〈candidate, weightC〉 ∈ Candidates do
30: for each lineR ∈ LinesRight do
31: if lineR 6∈ candidate then
32: weightR ← 1 − Levenshtein(l, lineR)
33: newCandidate ← concatenate(candidate, lineR)
34: weightNewC ← 1 − Levenshtein(l, newCandidate)
35: if (weightNewC >weightC)&(weightNewC >weightR) then
36: NewCandidates ← NewCandidates ∪ {〈newCandidate, weightNewC〉}
37: end if
38: end if
39: end for
40: end for
41: Candidates ← Candidates ∪ NewCandidates
42: end for
43: Maps ← {∅}
44: for each lineR ∈ LinesRight do
45: Maps ← Maps ∪ {〈l, lineR,maxWeight({c ∈ Candidates : lineR ∈ c})〉}
46: end for
47: return Maps
48: end procedure

We created a technique to build the fuzzy history graph that
uses a branch and bound optimization algorithm to minimize
the textual difference between lines by using the Levenshtein
distance [38]. Our intention with this technique is to estimate
the degree to which lines of code evolved into others, and to
be able to capture situations where any number of lines evolve
into any other number of lines.

This technique is described in Algorithm 1 and can be
divided into multiple steps. We include in parentheses the line
number that implements each step. First, we map the lines
that did not change at all between revisions with a weight
of 1 (2). Second, we process the change hunks that remain
(3–5). For each change hunk, we iterate through every line
of code in the older revision (9–11) and try to map it to the
most similar concatenation of lines from the newer revision
(23–46). Whenever a candidate concatenation (branch) is less
similar to the candidate line than any of its components,
we stop adding lines to that concatenation — we bound
our search (33–35). For our experiments, we also bounded
our search to a maximum of three lines of code, although
this setting is configurable. Third, we iterate through every
newer line and assign it the maximum weight identified for a
concatenation that contains it (42–44). Fourth, we perform the
same operation in the opposite order, iterating every line of
code in the newer revision to compare it to concatenations of
lines in the older revision (12–13). Fifth, we iterate through
every line pair between older and newer line, and assign it
the maximum weight found for it by comparing the mappings
obtained in both orders (14–19).

Algorithm 2 Slice Fuzzy History Graph
1: procedure FUZZYGETHISTORYSLICE(Criterion)
2: FuzzyHistorySlice ← {∅}
3: for each 〈startLine, startRevision, endRevision〉 ∈ Criterion do
4: startNode ← getNode(startLine, startRevision)
5: FuzzyHistorySlice ← FuzzyHistorySlice ∪ {startNode}
6: CurrentNodes ← CurrentNodes ∪ {startNode}
7: currentRevision ← startNode.Revision
8: while currentRevision >endRevision do
9: V isitedNodes ← {∅}

10: for each current ∈ CurrentNodes do
11: for each adjacent ∈ current.getAdjacentNodesInPreviousRevision() do
12: adjacent.weight ← edge(adjacent, current).weight × current.weight
13: if adjacent 6∈ V isitedNodes then
14: V isitedNodes ← V isitedNodes ∪ {adjacent}
15: end if
16: visited ← {adjacent ∈ V isitedNodes}
17: V isitedNodes.update(adjacent,max(adjacent.weight, visited.weight))
18: currentRevision ← adjacent.Revision
19: end for
20: end for
21: FuzzyHistorySlice ← FuzzyHistorySlice ∪ V isitedNodes
22: CurrentNodes ← V isitedNodes
23: end while
24: end for
25: return FuzzyHistorySlice
26: end procedure

Slice Fuzzy History Graph. This process involves the analysis
of the fuzzy history graph to obtain the complete history of the
lines of code that were specified in the fuzzy history slicing
criterion, between the revisions that were specified in it. In the
process of slicing the fuzzy history graph, we also estimate the
degree to which each analyzed line on each analyzed revision
belongs to the history of the lines specified in the slicing
criterion. Essentially, every time a new revision is visited, this
operation answers in a fuzzy manner the question included in
our example in Figure 1: What are the corresponding lines, in
other revisions, to a given line of code? The traversal of the
fuzzy history graph can be configured to compute a minimal
fuzzy history slice — including only nodes with changes to the
previously visited node (e.g., only the solid nodes in Figure 5),
or an extended fuzzy history slice — including both changed
and unchanged nodes (e.g., solid and open nodes in Figure 5).

The final output of the fuzzy history slicing process is a
fuzzy history slice, i.e., a fuzzy set of lines and revisions that
are related to the lines in the fuzzy slicing criterion. The fuzzy
history slice of a set of lines of code contains: (1) the revisions
of the program that modified those lines, (2) the lines that
correspond to them in such revisions, (3) a weight for each
included line indicating the degree to which it belongs to the
fuzzy history slice, and (4) the weighted edges that connect
included lines in consecutive revisions, indicating the degree
to which they evolved into each other.

As an example of a code-history-analysis technique that
benefits from the fuzzy information stored in the fuzzy history
graph, we created a novel fuzzy history slicing technique. We
also used this technique for our experiments in Section IV. We
implemented this technique as a breadth-first-search algorithm
over the fuzzy history graph.

We describe this technique in Algorithm 2. We include in
parentheses the line number that implements each step. First, it
creates a working set of lines to visit that includes every line in
the fuzzy history slicing criterion, and assigns them a weight
of 1.0 (2,4,5). Second, it iterates through the working set of
lines and obtains every line of code that belongs to a previous
revision of it (10–11). Third, for each previous revision, it
assigns each line’s weight by multiplying the weight assigned
to the line from which it was visited by the weight of the



edge that connects them (12). Fourth, once it has performed
this process for every line in the working set, it overwrites
the working set of lines with the set of past revisions visited
(23). Fifth, it filters the working set of lines by, when there
are duplicate lines, keeping the line with the highest weight
(13–21). Sixth, it also adds every line in the working set of
lines to the fuzzy history slice (22). Seventh, it checks if the
visited revision is the last one specified to visit (8). If it is not,
it starts the process again for the working set of lines. If it is,
it stops and it returns the fuzzy history slice.

IV. EVALUATION

In order to evaluate how fuzzy history analysis mitigates
the limitations of current models of fine-grained code history,
we perform two separate experiments that complement each
other. First, we study the accuracy improvement that the
fuzzy history graph may provide over current models for
representing code history. Then, we study the impact of such
accuracy improvement over code-history analysis tasks.

Experiment 1: Fuzzy History Graph Accuracy. In our first
experiment, we evaluate the accuracy with which the fuzzy
history graph represents code evolution for individual changes.
The goal of this experiment is to evaluate whether, and to what
extent, fuzzy history graphs improve the accuracy (in terms of
precision and recall) of current code-evolution models. Thus,
we built fuzzy, One-to-One, and All-to-All history graphs for
a set of real-world changes and measured their accuracy.

Subjects and Sampling. We used three real-world software
projects to sample changes for our evaluation. We picked a
diverse set of projects in terms of domain, size, and history:
APACHE COMMONS IO [2], which is a library to perform
input and output functionality; MOZILLA RHINO [40] is a
JavaScript parser written in Java; and ASPECTJ [18] is an
aspect-oriented programming framework for Java. APACHE
COMMONS IO has a size of 26 thousand lines of code (KLOC)
and a history of 11 years, MOZILLA RHINO is composed of
185 KLOC and has a history of 12 years, and ASPECTJ’s size
is around 510 KLOC and its history spans 10 years.

We randomly sampled 300 change hunks: 100 samples
from each software project. We extracted the change hunks
produced by all the changes in a software project by using
diff. We sampled change hunks that had between 1 and
15 lines in the older or newer revision, so that they had a
manageable size to ask developers to assess their evolution.

Human Assessment. Four participants independently and man-
ually assessed the code change histories and defined their
judgment of the correct and ideal mapping. The participants
had 5–12 years of experience programming in Java to ensure
that they were capable of assessing the ideal mapping.

Confirming our description in Section II, we observed
the subjective nature of actual code evolution: 31% of the
sampled change hunks obtained different assessments from
different developers — each change hunk was assessed by
2–3 developers (see sample 127 [1] for an example of varied
assessment). To reflect this fuzzy nature of code evolutions, for

each older line that was assessed to evolve into a newer line,
we assigned a weight to this evolution equal to the number of
developers that assessed it to exist, divided by the total number
of developers that assessed the change hunk. For example,
if three developers assessed the change hunk from revision
r4 to revision r5 of our example in Figure 1 and only one
developer assessed line 4 from r4 as evolving into line 5 in
r5, that mapping would have a weight of 0.33 in the human
assessment for that change hunk [1].
Independent Variable 1: Change Hunk Type. As observed
in Section II, the accuracy of current models is especially
impacted when lines of code evolve into or from multiple
other lines. In order to study both cases where current models
are expected to have limitations and cases in which they are
not, we classify the studied change hunks into four categories.
The classification divided our sample into: 145 One-to-One
change hunks, 36 One-to-Many change hunks, 34 Many-to-
One change hunks, and 85 Many-to-Many change hunks.
One-to-One. Every line of code in the older revision evolved

into at most one line of code in the newer revision.
One-to-Many. At least one line in the older revision evolved

into multiple lines in the newer revision.
Many-to-One. Multiple lines of code in the older revision

evolved into the same line of code in the newer revision.
Many-to-Many. At least one line in the older revision evolved

into multiple lines in the newer revision, and more than
one line in the older revision evolved into the same line
in the newer revision.

Independent Variable 2: Evolution Model. We compare the
accuracy of the fuzzy history graph to that of the other
two existing evolution models — One-to-One and All-to-All
History Graphs. We build the existing models for each change
hunk by replicating a corresponding state-of-the-art technique.
While other techniques could have been chosen for building
each evolution model, they would similarly suffer the intrinsic
limitations of modeling code evolution in a one-to-one or all-
to-all fashion.
One-to-One History Graph. Each line in the older revision

is modeled as evolving into at most one line in the
newer revision. We build this evolution model using the
technique proposed by Servant and Jones [47].

All-to-All History Graph. Every line of code in the older
revision is modeled as evolving into every line of code in
the newer revision. We build this evolution model using
the technique proposed by Zimmermann et al. [55].

Fuzzy History Graph. Every line of code in the older revision
is mapped as evolving into every line of code in the newer
revision to a different extent, which is indicated by a
weight. We build this evolution model using the technique
described in Section III.

Independent Variable 3: Similarity Threshold. Most of the
techniques that build a One-to-One model use a similarity
threshold to avoid modeling evolutions of lines that are very
dissimilar. In order to apply the same treatment to all the
evaluated models, we discard mapped lines with similarity



below the similarity threshold — calculated as one minus
the Levenshtein [38] distance — after the One-to-One model
and the Fuzzy History Graph are built. Because the All-to-
All model does not account for the similarity of the modeled
evolutions, it is not affected by the similarity threshold. We
use ten different values for the similarity threshold: 0.9, 0.8,
0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, and 0.0.
Dependent Variables. We measure the accuracy with which
a model represents each change hunk by measuring three
dependent variables: Precision (Formula 3), Recall (Formula 4)
and F-measure (Formula 5). We used the fuzzy variation of the
precision and recall metrics, since we assessed the evolution
of a change hunk as a fuzzy set of line mappings. However,
we will refer to these metrics as simply precision and recall in
the rest of the paper. The fuzzy-set definitions of precision and
recall depend on fuzzy cardinality and intersection. The cardi-
nality of a fuzzy set is defined as the sum of its membership
degrees, as in Formula 1. The intersection of two fuzzy sets
is defined as the set of all the elements that are in common,
each of which is assigned a membership degree equal to its
minimum membership degree from both sets, as in Formula 2.

|A| =
∑

µA (x) ,∀x ∈ X (1)

µA∩B (x) = min{µA (x) , µB (x)},∀x ∈ X (2)

Precision =
|Modeled mappings ∩ Human-assessed mappings|

|Modeled mappings|
(3)

Recall =
|Modeled mappings ∩ Human-assessed mappings|

|Human-assessed mappings|
(4)

F-measure = 2×
Precision× Recall
Precision + Recall

(5)

Results. In the results of this experiment, we expected to
observe the limitations in terms of precision and recall of
existing code-evolution models that we described in Section II,
as well as the fuzzy history graph mitigating such limitations.
We depict in Figure 6 the mean precision, recall and f-
measure provided for each type of change hunk by each model
in a matrix of 15 graphs. From top to bottom, each row
of graphs shows mean precision, mean recall, and mean f-
measure scores, respectively. From left to right, each column
of graphs shows the results provided by each model for
One-to-One, One-to-Many, Many-to-One, and Many-to-Many
change hunks, as well as the mean results for all kinds of
change hunks. The vertical axis of each graph represents mean
precision, mean recall, and mean f-measure scores, in the first,
second, and third row, respectively. The horizontal axis of all
graphs represents the similarity threshold used. Within each
graph, we use orange crosses to represent the scores obtained
by the One-to-One model, red squares for All-to-All, and green
triangles for the fuzzy history graph.

The One-to-One model provided the highest mean precision
and the lowest mean recall of all models for all types of
change hunks and similarity thresholds. We expected the One-
to-One model to provide high precision, because it includes
at most one mapping per older line of code, and is therefore
less likely to include false positives than other models. For
the same reason, we also expected the One-to-One model to

provide low recall. As the similarity threshold decreased, the
recall provided by the One-to-One model increased, because
it included more mappings. However, the recall stabilized
below the similarity threshold of 0.3 value, since the One-to-
One model did not include more than one mapping per line,
regardless of the similarity threshold used. This characteristic
also caused the One-to-One model to provide higher recall
for the One-to-One change hunks than for the other types
of change hunks. These results demonstrate the limitations of
One-to-One models described in Section II.

The All-to-All model provided the lowest mean precision
and the highest mean recall of all models for all types of
change hunks and similarity thresholds. Because the All-to-
All model mapped every older line of code to every newer
line of code in a change hunk, it always reached a recall
of 1.0. However, it modeled many false positives, which
caused it to provide low precision for all change-hunk types,
particularly for One-to-One change hunks. These results show
the limitations of All-to-All models described in Section II.

The fuzzy history graph provided mean precision and mean
recall values between those provided by existing models. As
we anticipated, the fuzzy history graph always provided higher
precision than the All-to-All model and higher recall than the
One-to-One model. Moreover, precision was positively corre-
lated with the similarity threshold, and recall was negatively
related with the threshold. As such, the fuzzy history graphs
allow a more flexible increase of the recall provided by the
One-to-One model without sacrificing as much precision as
the All-to-All model. We also observed that the potential for
increasing recall is much higher for One-to-Many, Many-to-
One and Many-to-Many change hunks, because the One-to-
One model already provides a quite high recall for One-to-
One change hunks. We also observed benefits of the fuzzy
history graph in terms of the f-measure, which provides a
balanced metric between precision and recall. In terms of f-
measure, the fuzzy history graph reached a higher value than
the existing models for most change-hunk types and most
similarity thresholds, specifically for similarity threshold 0.6,
which is the recommended value by most techniques that build
One-to-One models, e.g., [5], [9], [47].

Experiment 2: Impact of Accuracy Improvement in Code
History Analysis Tasks. In our second experiment, we eval-
uate how the accuracy improvement provided by the fuzzy
history graph impacts code history analysis tasks. We chose to
study the popular code history analysis task of identifying bug-
introducing changes as proposed by the SZZ approach [49],
since SZZ is an application area that represents very well the
kinds of applications that would benefit from fuzzy history
slicing. SZZ is based on fine-grained code-history analysis and
is therefore potentially limited by the compounding accuracy
limitations of existing code-history models.

Since SZZ was introduced, it has been adopted both by
researchers and practitioners. In the research literature, SZZ
has been extensively applied to study the characteristics of
bug-introducing changes, e.g., [4], [7], [19], [49], [53], as well



as to provide automatic recommendations about the quality of
code changes [30], [31], [34]. In addition, practitioners use
SZZ to detect the origin of bugs in industrial systems [43].

We analyzed the fuzzy, One-to-One, and All-to-All history
graphs for three software projects by applying fuzzy history
slicing — defined in Section III — to obtain the history slice
for a set of sampled lines and measured the accuracy with
which we could obtain the originating line(s) for each sample.
Subjects, Sampling and Human Assessment. In this experi-
ment, we used the same subjects as our previous experiment:
APACHE COMMONS IO, MOZILLA RHINO, and ASPECTJ.
For every subject, we randomly sampled slicing criteria of
a line of code that experienced at least five changes in their
prior history. For each slicing criterion, we manually traversed
the history of the program and determined the version in
which the selected line was originated by iteratively using GIT
BLAME over the history of the program. We also manually
assessed which lines of code corresponded to each sampled
line in their originating revision by iteratively comparing each
subsequent revision. Given the arduous nature of producing
correct, manual assessments, we conducted this experiment
with a total of 15 slicing criteria, randomly chosen, with five
criteria per subject program. From slicing criterion to its first
authorship, the length of the history slices spanned a median of
five years of development, with a maximum length spanning
nine years of development. These changed files, from criterion
to first authorship, spanned on average over 100 revisions per
criterion, which had to be manually inspected and traversed.
Independent Variable: Evolution Model. We used the same
evolution models as in Experiment 1. Since the One-to-One
and All-to-All history graphs produce discrete mappings, we
assigned their edges a 1.0 weight.
Dependent Variable: SZZ Accuracy. We measured the ac-
curacy of SZZ by evaluating the weighted lines contained
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Fig. 6: Mean precision, recall, and f-measure for the different code-evolution models
and change-hunk types (Higher is better).

in the originating revision with
the Normalized Discounted Cumu-
lative Gain (NDCG) metric [29].
NDCG is commonly used in in-
formation retrieval to assess the
quality of weighted results. The
NDCG metric was chosen because
it provides a convenient and stan-
dard way to evaluate (potentially)
weighted results in a way that ac-
counts for positions of multiple cor-
rect and incorrect results, and ac-
counts for the size of the result
set. NDCG evaluates a weighted
set as a recommendation that is
sorted in terms of the elements’
weights. NDCG results range from
0 — for the worst recommendation
possible — to 1 — for the best
recommendation possible. We used
the NDCG formula proposed by

Burges et al. [8], as in Equation 6.

NDCGp =
DCGp(recomm.)

DCGp(ideal recomm.)
, DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
(6)

NDCG is calculated as the Discounted Cumulative Gain
(DCG) score for a recommendation, divided by the DCG
score of an ideal recommendation — in which the correct
lines are contained in its top positions. In the DCG formula
(Equation 6), i represents the top ith position inside a recom-
mendation, and reli represents the actual relevance of the item
recommended in position i. We attributed a relevance of 1 to
every line of code that we assessed as corresponding to the
criterion. We used NDCG50 scores to accommodate even the
largest produced recommendations in our study (50 lines). In
some cases, multiple lines were recommended with the same
weight — as was the case with the absolute, discrete models.
In such cases, we computed the average case for the order
of the recommendation (i.e., as if the recommendation results
were randomly ordered over an infinite number of orderings).

Results. In this experiment, the fuzzy history graph performed
better than existing models. We observed the limitations of
the One-to-One model and the All-to-All model propagating
through multiple revisions of the code and thus decreasing the
accuracy of the SZZ code-evolution analysis task. Figure 7
shows, for each subject, box plots that represent the distribu-
tion of NDCG50 scores provided by each history model.

The One-to-One model provided a median NDCG50 score
of 0.0 for all subjects, which is displayed as a flat bar at the
0.0 score in Figure 7. For most of the studied lines of code,
the One-to-One model did not capture their changes in enough
revisions to track their history back to their originating revision
— we illustrated this limitation in Figure 1. Since the One-
to-One model applies a similarity threshold to decide which
lines evolved into others, it prematurely ended code history.
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As a result, SZZ returned no lines for the studied lines in their
actual originating revisions.

The All-to-All model obtained a median NDCG50 score of
0.5 in MOZILLA RHINO and a median NDCG50 score of 0.63
— in APACHE COMMONS IO and ASPECTJ. Because the All-
to-All model often contains multiple mappings for each line of
code, the history of a single line of code included increasing
numbers of lines as the traversal length increased over history.
However, in the end, we were surprised to find that SZZ
using the All-to-All history graph sometimes included the
correct, human-assessed lines in the originating revision within
a reasonably sized set of lines. We speculate that, at least
for our randomly chosen slicing criteria, the compounding
imprecision in the example program in Section II was found
to a limited extent.

In contrast, the fuzzy history graph obtained a median
NDCG50 score of 1.0 in all subjects, which is displayed as
a flat bar at the 1.0 score in Figure 7. For all the studied
lines of code (except for one in ASPECTJ), SZZ recommended
all their actual originating lines of code in the top position
of its recommendation. The weights assigned to mappings in
the fuzzy history graph allowed SZZ to select the paths with
highest overall similarity in the history of the studied lines and
thus recommend their actual corresponding lines in the top
positions of its recommendation. Differently than the One-to-
One model, the fuzzy history graph contains all potential map-
pings, so the history of lines of code did not end prematurely.
Differently than the All-to-All model, the fuzzy history graph
assigned weights to mappings to represent their strength, so
SZZ could provide more informed recommendations by using
the strength of the changes experienced by the line of code.
Discussion. Reflecting upon these results, we discuss the
implications and other aspects of our evaluation.
Benefits of Accuracy Improvement for Code History Tasks.
We observed the limitations of existing code-history models
compounding as more past code revisions were included in
the code-history analysis (as also illustrated in Figure 1). A
representative case is one of our studied samples for RHINO,
line 1018, revision 1.250 of Interpreter.java.

With the One-to-One model, SZZ identified only 3 past
revisions containing only 1 line of code each. Since SZZ
estimated that changes before those 3 past revisions modified
the code too much, it stopped identifying revisions early —
far from reaching the originating revision. With the All-to-
All model, SZZ identified 23 past revisions, reaching the
originating revision, but identifying 50 lines of code in it. Since

SZZ accounted for every potential line-of-code evolution, it
identified too many revisions and lines within them. With
the fuzzy history graph, SZZ identified the same revisions
and lines as the All-to-All model, but it assigned the highest
relevance (i.e., membership value) to the actual originating line
of code that corresponded to the selected line.

As a consequence, users of SZZ would: (1) not find the
originating revision for the selected code if using a One-to-
One model, or (2) over-approximate it to a large amount of
information if using an All-to-All model. For practitioners, this
would imply: (1) incorrectly learning lessons from changes
that were not actually bug-introducing, or (2) incorrectly learn-
ing that a bug was introduced by a large superset of changes.
For researchers, such under and over approximations would
introduce inaccuracies in SZZ-based research techniques, e.g.,
estimating the quality of code changes [34]. In contrast, when
using the fuzzy history graph, practitioners and researchers
would correctly identify the bug-introducing changes at the
top of the ranked lines returned by SZZ, and therefore would
be able to learn from the correct changes.
Computational Efficiency. For all three approaches, for all
subject programs, and for all history tasks, the results for
each graph analysis were computed in less than a second —
in a consumer laptop: 2.53 GHz Intel Core 2 Duo (P8700),
8GB RAM — since the graph is pre-computed in a database
and it does not need to be kept in memory in full. Fuzzy
history graphs are built offline, being a 1-time cost — with
negligible-cost incremental updates for new code changes. The
graph is then reused for all analyses. As such, none of these
approaches (i.e., One-to-One, All-to-All, nor Fuzzy) exhibited
any challenges in terms of computational scalability, despite
that all of our software subjects are real-world systems with
over 10 years of active development. All such approaches were
virtually equivalent in terms of computational time overhead.
Results Summary. In summary, our experiments revealed that
the fuzzy history graph improved the accuracy of existing
code-history models and the accuracy of an automatic tech-
nique to perform a code-history analysis task (SZZ).

V. RELATED WORK

Researchers proposed techniques to analyze the multi-
revision evolution of code for specific purposes and at different
granularities; e.g., Kim et al. [33] and Duala-Ekoko and
Robillard [16] track the history of code fragments that contain
code clones to study their evolution. Herzig and Zeller [27]
analyze multiple revisions of methods to predict defects.
Hassan and Holt [25] analyze the evolution of methods to
infer change rationale. In contrast, history slicing facilitates
multi-purpose, multi-revision analyses of code evolution at
the granularity of a line of code. Moreover, in this paper, we
seek to improve the effectiveness of such multi-revision code
analyses by representing evolution more descriptively.

A number of researchers proposed line-mapping techniques.
One example of line-mapping technique that produces an All-
to-All model is the annotation graph, proposed by Zimmer-
mann et al. [55]. Many approaches have been proposed to



model code evolution in a One-to-One fashion. Canfora et al.
[9], [10], Chen et al. [11], Williams and Spacco [51] use a line-
mapping technique that first performs an inexact difference of
revisions, and then refines it by using an optimization algo-
rithm. Reiss [44] proposed a group of line mapping techniques,
some of which considered adjacent lines. Asaduzzaman et al.
[5] proposed a language-independent line-mapping technique
that also detects lines that evolve into multiple others, although
only when they change little and are contiguous. In prior work
the authors of this paper also proposed a one-to-one history
graph [47] using Levenshtein [38] distance and the Kuhn-
Munkres [36] algorithm. In this current work, we describe
the first explicit weighted model of code evolution.

Other models represent code evolution at different granu-
larities. Hassan and Holt model code evolution at the method-
level [24], [25]. Hata et al. [26] proposed a model for tracking
the history of methods and fields that accounts for renames.
Godfrey and Zou [23] and Wu et al. [52] also track the
history of methods and fields and detect their splits and
merges. Zimmermann et al. [54], Fluri et al. [20] and Spacco
and Williams [50] capture differences at the statement level.
Girba and Ducasse [22] proposed a code-evolution meta-model
at multiple levels of granularity. Other researchers proposed
algorithms that perform the mapping over models of the
program, e.g., [3], [39] allowing the detection of moved code,
e.g., [15], [28] or providing techniques for specific domains,
e.g., [17]. Some techniques capture code changes by moni-
toring the IDE, e.g., [15], [45], to model evolution with high
accuracy when all developers always use the required IDE.
Our model is applicable to such models. Davies et al. [13],
[14] proposed “software bertillonage” to track the evolution of
releases of code outside the revision-control system. Finally,
Kim and Notkin [32] presented a survey of techniques that
track program elements between revisions. To the extent of
our knowledge, the model proposed in this paper is the first
fine-grained code-evolution model to quantify the evolution of
code and preserve it as a fuzzy measure to augment the model
itself, thus enabling multi-revision analyses of code evolution
at the line-of-code granularity to leverage such fuzzy measure.

VI. THREATS TO VALIDITY

An external threat to validity is whether our proposed
technique may capture some complex changes, such as move-
ments of code between files, since it is based on textual
differencing. We intend to study in future work the accuracy
improvements that may be provided by modeling fine-grained
code history with semantic approaches, e.g., [3], in a fuzzy
manner. In this paper, however, our goal is to study the
accuracy improvements provided by a fuzzy approach to mod-
eling and analyzing code history. The limitation for capturing
moved code between files affects both our proposed textual
differencing technique and all the other techniques studied in
our experiments. In that respect, we believe that this limitation
did not affect the results of our experiments. Additionally, the
fuzzy history graph may address this limitation, since it allows
its construction with other line mapping techniques, e.g., [15].

Another possible external threat to validity is whether
our technique would scale to other code bases. We studied
software systems of up to 510 KLOC in size and up to 12
years of development, and all over 10 years of development. In
all cases, for all techniques, the computational cost was well
under 1 second, which demonstrates that the computational
cost of such querying is negligible.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel model of source-code
history at the line-of-code granularity (fuzzy history graph)
and novel multi-revision analysis based upon it (fuzzy history
slicing) that can improve the accuracy of the modeling and
analysis of code history. The fuzzy history graph allows for a
more expressive representation of code history by including a
measure of the degree to which lines of code evolve.

We provided techniques to build fuzzy history graphs and
analyze them (fuzzy history slicing). We demonstrated their
accuracy over three real-world software projects, each having
over a decade of history.

We evaluated the benefits provided by fuzzy history graphs
for representing and analyzing code history. The fuzzy history
graph provided a tunable balance between precision and recall,
and moreover provided a higher f-measure score than afforded
by existing code-history models. Also, we found that the fuzzy
history graph improved the accuracy of an automatic technique
for a code-history analysis task (identifying bug-introducing
changes with SZZ [49]) over existing code-history models.

In practice, these results mean that software engineers could
more accurately identify past bug-introducing changes to learn
from them [43], and automatic SZZ-based techniques would
more accurately predict the quality of code changes, e.g.,
[30], [31], [34]. Moreover, and more importantly, this paper
provides a novel theoretical fuzzy framework for modeling and
analyzing code history, which also opens the door for other
future fuzzy code-history analyses to emerge as well — poten-
tially even by adapting other existing discrete approaches to a
fuzzy model, e.g., automatic recommendations of developers
to fix bugs [42], [48], or detection of code clones [16].

In the future, we plan to experiment with additional algo-
rithms to build the fuzzy history graph that may provide yet
other benefits to the model and client analyses. We also plan
to design additional code-history analysis techniques that can
benefit from processing the weights of the fuzzy history graph,
such as an analysis technique to identify the most relevant
changes in the history of a method.

VIII. REPLICATION

We provide our experimental dataset as a resource for future
research and for experimental replication [1].
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