
Assessing Incremental Testing Practices and Their Impact on
Project Outcomes

Ayaan M. Kazerouni, Clifford A. Shaffer, Stephen H. Edwards, and Francisco Servant
Virginia Tech
Blacksburg, VA

ayaan|shaffer|s.edwards|fservant@vt.edu

ABSTRACT
Software testing is an important aspect of the development process,
one that has proven to be a challenge to formally introduce into
the typical undergraduate CS curriculum. Unfortunately, existing
assessment of testing in student software projects tends to focus on
evaluation of metrics like code coverage over the finished software
product, thus eliminating the possibility of giving students early
feedback as they work on the project. Furthermore, assessing and
teaching the process of writing and executing software tests is also
important, as shown by the multiple variants proposed and dis-
seminated by the software engineering community, e.g., test-driven
development (TDD) or incremental test-last (ITL). We present a
family of novel metrics for assessment of testing practices for incre-
ments of software development work, thus allowing early feedback
before the software project is finished. Our metrics measure the
balance and sequence of effort spent writing software tests in a work
increment. We performed an empirical study using our metrics to
evaluate the test-writing practices of 157 advanced undergradu-
ate students, and their relationships with project outcomes over
multiple projects for a whole semester. We found that projects
where more testing effort was spent per work session tended to be
more semantically correct and have higher code coverage. The per-
centage of method-specific testing effort spent before production
code did not contribute to semantic correctness, and had a negative
relationship with code coverage. These novel metrics will enable
educators to give students early, incremental feedback about their
testing practices as they work on their software projects.

KEYWORDS
incremental development, process measurement, software reposi-
tory mining

ACM Reference Format:
Ayaan M. Kazerouni, Clifford A. Shaffer, Stephen H. Edwards, and Francisco
Servant. 2019. Assessing Incremental Testing Practices and Their Impact
on Project Outcomes. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (SIGCSE ’19), February 27-March 2, 2019,
Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/3287324.3287366

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’19, Feb 27-Mar 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00
https://doi.org/10.1145/3287324.3287366

1 INTRODUCTION
Software testing is an important aspect of software development,
and one that is widely recognized to contribute to software qual-
ity [25, 32]. Unfortunately, teaching effective software testing often
runs into many difficulties, e.g., students in many US universities
display a disinclination to practice regular software testing as they
work toward project completion [13], and they often show poor
testing ability [16, 37]. Furthermore, software testing is not a formal
part of the typical CS undergraduate curriculum [25, 35].

In this paper, we focus on two major challenges for teaching
software testing. First, existing approaches to assess student soft-
ware testing can typically only be applied after students finish
their project [15, 37]. As a consequence, by the time that these ap-
proaches provide students with feedback, they cannot really apply
it to correct their practice for the same assignment. Examples of
such measures include code coverage [15, 16, 37], bugs uncovered
by running each student’s test suite against every other student’s
implementation [17, 22], and coverage frommutation testing [1, 34].
In order to be able to provide students with early and continuous
feedback, new approaches are necessary — to continuously assess
the process that students follow as they work on a software project.

Second, there is a lack of strong understanding of how specifi-
cally software testing should be practiced [3, 28]. Existing studies
measure the effects of testing methodologies [11, 19] by studying
scenarios of complete adherence to a given well-known technique,
e.g., test-driven development (TDD) [4, 7], often with conflicting
results [28, 31] 1. However, the findings from these studies may
not generalize to the context of students learning testing practices.
The testing behaviors of students working on projects in uncon-
trolled environments (e.g., at home) typically cannot be cleanly
dichotomized into fully test-first or fully test-last styles of develop-
ment. In our experience, since students are learning the practice,
they typically follow various testing practices with varying rigor
at different points in time.

To address these challenges, we propose a novel set of metrics
that will enable educators to provide students with early, continu-
ous feedback about their testing practices — as they are working
on their software project. Our metrics quantitatively character-
ize how students write test code and production code for work
increments, enabling the incremental assessment of their testing
practices. These novel metrics measure the two testing behaviors
that practitioners and software engineering researchers consider
beneficial: the balance of testing effort (a common idea behind
TDD and ITL [4, 7, 18, 19]), and the sequence of testing effort
(the main idea behind test-first development [7]). In addition to
1Most industrial case studies lean toward an increase in program quality (external and
internal), with a decrease in developer productivity

https://doi.org/10.1145/3287324.3287366
https://doi.org/10.1145/3287324.3287366
https://doi.org/10.1145/3287324.3287366

SIGCSE ’19, Feb 27-Mar 2, 2019, Minneapolis, MN, USA A. M. Kazerouni, C. A. Shaffer, S. H. Edwards, F. Servant

measuring work increments, our metrics are also continuous in na-
ture: they measure the extent to which students followed beneficial
practices within a work increment — instead of measuring whether
or not they followed them. As a result, our metrics more faithfully
represent (and thus allow us to study) the varying levels of student
engagement with various testing practices at different times in
the project life-cycle — without needing to classify their testing
practices as any particular well-known technique (for neither work
increments nor the whole project).

We performed an empirical study to learn the relationship be-
tween our metrics and the outcome of the software projects that
students wrote. We analyzed the natural programming habits of 157
students working on complex projects with month-long life-cycles,
with a median of 1.4K lines of code. We found that balancing the
amount of test code and production code written during each work
session (§3.2.1) — both project-wide and for specific pieces of the
project — was related to better project outcomes. Additionally, we
found that writing more test code before finalizing the relevant pro-
duction code was not related to project correctness, and negatively
related to test suite coverage. These findings show that our metrics
can be used to incrementally provide students with feedback about
their testing practices — as they work on their projects — to lead
them to project success.

This paper provides the following contributions:
• A novel family of metrics to faithfully capture the extent to
which students achieve balance and sequence of testing and
production coding effort.

• An empirical study that measures the extent to which these
metrics are related to successful project outcomes (correct-
ness and test suite coverage)

2 PROPOSED METRICS OF TESTING EFFORT
In this section, we propose a new family of metrics to measure the
balance and sequence of test and production code writing effort
in a continuous fashion. Figure 1 shows an example sequence of
developer activity, created from synthetic data. Each group of blocks
represents a work session, and each individual block represents
test code (shaded) or production code (solid) written for a given
method. Figure 2 depicts the themetrics we describe in the following
sections, in terms of the example activity sequence from Figure 1.
Metrics are defined in terms of the balance of testing effort and
the sequence of testing effort.

2.1 Balance of Testing Effort
We examine commits in the raw event stream in terms of time and
location. Commits may be bucketed based on the work session in
which they took place, or the methods they were related to.

Project-wide Overall Balance of Testing Effort (POB). This metric
is depicted in the first row of Figure 2. It represents the test effort in
the entire project regardless of the production methods being tested
or the session in which test code was written. That is, notice how
the visual dimensions for color (method), ordering, and block-group
(sessions) have been eliminated for this metric.

“Effort” is captured as the number of line-level code-changes
(additions, removals, or inline modifications) as captured by the
git diff command (see §3.2). We define “testing effort” as the

percentage of effort that was devoted to writing test code. By walk-
ing the code changes for a project, we compute the total size of all
changes to test code T and the total size of all changes to produc-
tion code P . Then we can calculate testing effort as a percentage of
overall effort spent writing test code:

POB =
T

P +T
(1)

Note that this is not equivalent to the percentage of source code
that is test code. Additions, removals, and line-changes are included
in this measure, as opposed to simple line counts at each snapshot.
Therefore, this is a measure of testing effort, rather than a measure
of amount of test code.

Method-specific Overall Balance of Testing Effort (MOB). This
metric is depicted in the second row of Figure 2. In this metric,
we determine testing effort while taking location into account, i.e.,
we measure the testing effort devoted to individual methods. We
use the method-modification stream described in §3.2.2, and ap-
ply Equation (1) to each method in the project to compute the
testing effort devoted to each method. Let this set of method-level
test effort values be POBm . Then we calculate the MOB metric as
the median of the distribution of testing effort measured for all
methods.

MOB = P̃OBm (2)

Project-wide per-Session Balance of Testing Effort (PSB). This met-
ric is depicted in the third row of Figure 2. To determine testing
effort while taking time into account, we compute project-wide per-
session balance (PSB) of production code and test code. We grouped
snapshots into work sessions as described in §3.2.1, and calculated
the testing effort devoted to each work session using Equation (1).

Therefore, if POBw is a set of values of testing effort devoted to
each work session, this measure of testing effort over time (PSB)
can be defined as the median testing effort across all work sessions:

PSB = P̃OBw (3)

Why use the median? Each project will certainly include some
testing effort, because subjects were required to include test suites.
Previous work has found that test code and production code do
not co-evolve gracefully, whether written by students or by profes-
sionals [8, 9]. Using the mean testing effort, there would be no way
to gauge whether this testing effort is put in gracefully over time.
That is, a dearth of testing effort early on would be counteracted by
an increase in testing effort at the end of the project, or vice versa.

Figure 3 shows the distribution of this metric across all projects.
The distribution of medians indicates that a majority of students
put in less than 20% testing effort in at least half of their work
sessions. This could mean that subjects are not testing as much as
they should. This would be in keeping with other work that finds
that test code and production code do not co-evolve gracefully for
students or for professionals [8, 9].

Method-specific per-Session Balance of Testing Effort (MSB). This
metric is depicted in the fourth row of Figure 2.MSB determines
testing effort while taking both time and location into account. That
is, for the production code that is written in a given work session,
we would like to know if the student tends to write related test code.
We compute method-specific balance over time (MSB) of production

Assessing Incremental Testing Practices and Their Impact on Project Outcomes SIGCSE ’19, Feb 27-Mar 2, 2019, Minneapolis, MN, USA

Work Session 1 Work Session 2 Work Session 3 Work Session 4
… … …

Production code written for
method A

Test code written for
method A

Production code written for
method B

Test code written for
method B

Production code written for
method C

Test code written for
method C

Legend

Figure 1: An example sequence of developer activity.

Project-wide Overall Balance of Testing effort (POB)
Proportion of overall effort devoted to testing (regardless of order, method, and work session)

Method-specific Overall Balance of Testing Effort (MOB)
Proportion of effort devoted to testing, per method (regardless of order and work session)

Project-wide per-Session Balance of Testing Effort (PSB)
Proportion of effort devoted to testing, per work session (regardless of order and method)

Method-specific per-Session Balance of Testing Effort (MSB)
Proportion of effort devoted testing, per method and work session (regardless of order)

Method-specific Overall Sequence of Testing Effort (MOS)
Proportion of effort devoted to testing before a method was completely implemented, per method and work session

Effort devoted to production code Effort devoted to test code

Total overall effort

… … …

Production code written for
method A

Test code written for
method A

Production code written for
method B

Test code written for
method B

Production code written for
method C

Test code written for
method C

Production code written for any
method

Test code written for any
method

… … …

Legend

Figure 2:Measures to be derived froma programming activity event stream. Each rowdepicts a differentmethod of aggregating
the programming events from Figure 1.

Figure 3: Distribution of median testing effort across work
sessions

code and test code. To do this, we use method-modification events
(§3.2.2) and divide them intowork sessions based on their timestamps
(§3.2.1).

Therefore, for all changes related to a given method that were
made in a given work session, we may measure the testing effort
using Equation (1). We are left with test effort values at two levels
of grouping: work session and method. To compute MSB, we
first find the project-wide per-session testing balance for individual
methods, and call it PSBm . Then we find the median per-session
testing balance across all methods. Therefore, this metric can be

represented as a “median of medians”:

MSB = P̃SBm (4)

2.2 Sequence of Testing Effort
We are interested in the balance of test code written before and after
the relevant production code, and the relationship of that balance
with project outcomes.

Only a small number of methods across the entire data set were
invoked in a test before being declared themselves. This could be
because test-first was not practiced at all, or because test-first devel-
opers declared incomplete stubs before writing tests, or because of
some other reason. We can characterize this behavior by observing
the central tendency of the size of changes to test code that take
place before the relevant production code has been finalized.

Method-specific Overall Sequence of Testing Effort (MOS). This
metric is depicted in the last row of Figure 2. We measure sequence
as the percentage of test code that was written for a production
method before the method was finalized2.

Therefore, ifm is a production method, then Tb is the total size
of changes to test code beforem was finalized, and Ta is the total
size of changes to test code after m was finalized. Note than Tb
and Ta only include changes to test methods that directly invoke
m. Then we compute the percentage of test code form that was

2A production method is ‘finalized’ when it is changed for the last time.

SIGCSE ’19, Feb 27-Mar 2, 2019, Minneapolis, MN, USA A. M. Kazerouni, C. A. Shaffer, S. H. Edwards, F. Servant

written beforem was finalized as:

MOSm =
Tb

Tb +Ta

We compute themedianMOSm over all methods to get an overall
measure for a student working on a project (MOS):

MOS =�MOSm (5)

3 RESEARCH METHOD
We performed an empirical study to understand the impact that
balance and sequence of testing effort have on the quality of
projects. We are driven by the following research questions:
RQ1: How do software product outcomes relate to the balance of

effort devoted to writing test code and production code?
RQ2: How do software product outcomes relate to the sequence

of effort devoted to writing test code and production code?

3.1 Study Setting
We studied software systems that were developed by Computer
Science students enrolled in a third year Data Structures & Algo-
rithms (DSA) course at a large R1 public university in the US in
the Fall 2016 semester. Students in this course have taken several
prerequisite programming courses, most of them in Java. Subjects
became acquainted with the JUnit3 testing framework in a previous
course, and in the DSA course were taught material about project
management and incrementally writing and testing code by one of
the authors of this paper. We examine 157 students’ programming
habits as they work on four course projects over the course of the
semester, for a total of 415 observations. Our design is unbalanced
because not all students completed all 4 projects, typically because
they withdrew from the course.

Subjects were given about four weeks for each project, and their
solutions had a median size of 1.4K lines of source code, including
tests. Each project asked the subjects to implement one or more
data structures, along with its standard operations. Students were
required towrite JUnit tests for their code. In addition to correctness,
students were graded on the percentage of conditions covered by
their test-suites, providing strong incentive to eventually write test
suites with near-total code coverage.

3.2 Data Collection
To operationalize the specific concepts that will soon be described,
we collected and preprocessed the activities that our studied devel-
opers performed. We developed a custom Eclipse plugin to capture
developer activity in the IDE [26, 29]. Our plugin creates a git repos-
itory and creates a new commit every time the developers click the
“save” button in the IDE. Because the commits are maintained by
our plugin and are not under the control of subjects, we avoid some
“perils” of mining these snapshots [12]. That is, histories were not
“re-written” using git rebase or amend commands. This rich data
set captures the detail and nuance of test-writing behavior that is
necessary to calculate the metrics to be described below. Reposito-
ries were mined using the open-source tool RepoDriller [2] 4.

3http://junit.org
4Now PyDriller [38]

3.2.1 Work sessions. Following Kazerouni et al. [27], we split
the event stream for a subject working on a project into work
sessions. Work sessions are sequences of activity, and are delimited
by an hour or more of inactivity. In this context, ‘activity’ refers to
automatically captured commits (driven by file save events), and
they were grouped based on their timestamps.

3.2.2 Capturing Test-code and Production-code Modifications.
To determine when changes affected test code vs. production code,
andwhen test-code changeswere related to production-code changes,
we extracted developer activity on a per-method basis, and call these
events method-modification events.

Using git diff output and an AST of the current snapshot,
we determine which production methods and which tests for such
production methods were modified in each commit. A test for a
production methodm is modified in a commit if the test directly
invokesm. Therefore, we magnify the commit history into a series
of method-specific events, meaning we expand commits into a
series of method-specific MODIFY_SELF or MODIFY_TEST_FOR_SELF
events.

3.2.3 Data Preprocessing. Wefiltered out some productionmeth-
ods from analysis. We excluded getters, setters, and printing meth-
ods. Exploratory analysis showed that 93% of projects in our dataset
directly invoked at most 60% of all production methods in test code5.
In other words, the distribution of testing effort across production
methods is highly skewed. Both the mean and median values would
be highly influenced by the skewed distribution, and would lead to
a misleading ‘score’ for method-specific testing effort.

To account for this, we only examine the top 60% most-tested
production methods in each project, where methods were ordered
by the testing effort they were given. By examining only these most-
tested methods, we are robust to the highly skewed distribution of
testing effort across methods.

3.3 Data Analysis
Once we characterized the balance of writing test code and produc-
tion code as a series of continuous independent variables, we used
linear models to determine their effects on the following project
outcomes:

• Semantic Correctness (C): Measured as the percentage
of tests passed from a suite of automated acceptance tests
written by the course teaching staff.

• Test Suite Coverage (T): Measured as the percentage of
condition coverage achieved by the student’s own test suite,
measured using the JaCoCo6 plugin. While subjects were
required to submit test suites with nearly 100% code coverage,
that might not happen until near the end of the development
cycle.

We use linear mixed-effects ANCOVAs [6], with students and
projects as crossed random effects. Experience suggests that no two
students are the same, and this inherent variation might confound
the model. Further, it is difficult to compare the programming pro-
cess on different projects, even if they are assignments in the same

5Note that this is not the same as code coverage, which includes constructs that are
invoked further down the call stack.
6https://www.eclemma.org/jacoco/

Assessing Incremental Testing Practices and Their Impact on Project Outcomes SIGCSE ’19, Feb 27-Mar 2, 2019, Minneapolis, MN, USA

Table 1: Final ANCOVA Summary – Overall Testing Effort

C T

Measure Estimate p Estimate p

POB 0.30 < 0.001∗ 0.23 < 0.001∗
MOB NA 0.12 NA 0.41
PSB NA 0.83 NA 0.97
MSB NA 0.97 0.08 0.01*
MOS NA 0.74 -0.06 0.03*

Residual Std. Err. = 0.23
Marginal R2 = 0.05
Conditional R2 = 0.39

Residual Std. Err. = 0.11
Marginal R2 = 0.10
Conditional R2 = 0.17

course. Mixed-effects models allow us to control for the variation
from these unaccounted-for effects.

We present marginal and conditional R2 values [33] that de-
scribe the amount of variance in project outcomes explained by our
models. Marginal R2 values refer to the amount of variance in the
outcome variable described by fixed effects only (in this case, our
process measurements). Conditional R2 values refer to the amount
of variance in the outcome variable described by the entire model (in
this case, the process measurements as well as individual students
and assignments).

We fit the following linear mixed models for semantic correct-
ness (C) and test suite coverage (T), using our metrics as fixed
effects7:

C ∼ POB +MOB + PSB +MSB +MOS + (1|student) + (1|project)
T ∼ POB +MOB + PSB +MSB +MOS + (1|student) + (1|project)

The models are summarized in Table 1. Estimates suggest that
project-wide overall balance (POB) of test code and production code
is positively related with semantic correctness and test coverage.
Additionally, test coverage has a positive relationship with method-
specific per-session balance (and MSB) of test and production code,
and a significant but weak negative relationship with the amount
of testing effort put in before finalizing production code (MOS).

To gain a more fine-grained understanding of our measures and
their effects, we fit another ‘process-based’ model for each outcome,
only including the measures that took time into account:

C ∼ PSB +MSB +MOS + (1|student) + (1|project)
T ∼ PSB +MSB +MOS + (1|student) + (1|project)

The models are summarized in Table 2. Notice that PSB is signif-
icantly related to both outcomes under the process-based model,
while it was not significant under the overall model in Table 1.

4 RESULTS
We now present our findings regarding RQ1 and RQ2.

RQ1 – Balance: Both semantic correctness (C) and test coverage
(T) showed positive relationships with project-wide per-session
balance of test and production code (PSB). That is, project implemen-
tations tend to be more semantically correct, and their test-suites

7The notation (1 |f actor) means that factor was used as a random effect.

Table 2: ANCOVA Summary – Process-Based Testing Effort

C T

Measure Estimate p Estimate p

PSB 0.30 0.005* 0.12 0.008*
MSB 0.11 0.10 0.09 0.002*
MOS -0.03 0.62 -0.06 0.02*

tend to have higher condition coverage, when students more often
write test code when they sit down to work on the project.

Test coverage was also positively related to the balance of testing
effort devoted to individual methods in each work session (MSB)
That is, condition coverage tended to be higher when more testing
effort was devoted to individual methods each time the project was
worked on.

RQ2 – Sequence:Whether testing effort took place more predom-
inantly before or after the relevant production code was finalized
was irrelevant to semantic correctness. On the other hand, test
coverage had a negative relationship with MOS, indicating that
implementations tended to have higher condition coverage when
a higher proportion of the testing effort devoted to a method was
expended after the method was finalized.

5 DISCUSSION
Why is semantic correctness not associated with writing test code for
relevant production code? Notice that method-specific per-session
balance of test code and production code (MSB) was not significantly
related to semantic correctness (Table 2). Does this mean that it
does not matter what test code a developer writes, only that they
write some test code? It would be surprising and counterintuitive to
think so. However, it may be that, for this population, the variance
in correctness explained by the specificity of test code written is
subsumed by the variance explained by simply writing test code
consistently.

Why is PSB significantly related to outcomes in the process-based
model (Table 2), but not in the overall model (Table 1)? It may be
that the variance explained by consistently writing software tests
in each work session is subsumed by the variance in explained by
maintaining an overall balance of testing effort.

How does one balance test code and production code over time,
while also writingmore test code after the relevant productionmethods
have been finalized? The quantitative measure MOS measures the
percentage of testing effort that tends to be put in before the relevant
production method has been finalized, and is negatively related
with the percentage of conditions covered by the test suite. These
findings together suggest that while regular, balanced testing is
important to test coverage, it is also important to put in testing
effort after pieces of functionality have been completed.

What do the low marginal R2 values suggest? The process mea-
surements show significant relationships with semantic correctness
and test suite coverage. Marginal (fixed effects only) R2 values [33]
for both models suggest that this effect size is small (5% for C and
10% for T). There are always likely to be numerous unexplained
sources of variation when measuring human behavior. In other

SIGCSE ’19, Feb 27-Mar 2, 2019, Minneapolis, MN, USA A. M. Kazerouni, C. A. Shaffer, S. H. Edwards, F. Servant

words, there could be any number of unaccounted factors that af-
fect the quality of software produced by developers (particularly
students). Those factors are not under study. The goal of this study
was to determine the impact of balancing production and test cod-
ing effort on project quality, and the models are able to answer our
research questions with statistical confidence.

It could also be that the assignments in this DSA course do
not “hit the right switches”, that is, success did not demand a high
adherence to incremental testing. After all, they were not explicitly
designed to do so. It would be interesting to conduct a similar study
using semester-long projects from dedicated software engineering
courses, more closely imitating real-world scenarios.

6 THREATS TO VALIDITY
Internal Validity. Since we do not have strictly defined experi-
mental and control groups, we do not claim direct causality between
process measurements and project outcomes. Our sample of student
developers is sufficiently large and does not suffer from a selection
bias 8. Therefore, we do not believe that this is a serious threat to
validity.

Subjects had mechanical experience with the JUnit testing frame-
work from a previous course. Multiple class periods were devoted
to teaching material about project management skills, including
incremental software testing, before the first project was assigned.
This fact might mitigate threats from differential experience.
External Validity. Findings based on this particular student pop-
ulation working on these assignments might not be generalizable
to all junior level student programmers. Further, student behavior
is often motivated by a number of unknown external factors (for
example, deadlines and responsibilities from other courses). It is
unclear if or how this might have affected our findings, other than
to observe that this semester seemed typical of our long experience
with the course.
Construct Validity. The largest threat to construct validity is re-
lated to the computation of the event stream described in §3.2.2.
Specifically, we link test methods and production methods if a given
test method directly invokes a given production method. However,
it could be that the production method was not the ‘focal point’ [21]
of the test method, and was only being invoked to set up the test
case, or to gain access to the method that was actually being tested.
This could have increased the number of MODIFY_TEST_FOR_SELF
events for some production methods, affecting our process mea-
surements.

However, if a production method is directly invoked in a test, it
is reasonable to claim that the method is being tested, regardless of
developer intent. Indeed, this is the basis for code coverage, which
treats methods (or statements, branches, etc.) as “covered” as long
as they are invoked “somewhere in the call stack”.

7 RELATEDWORK
In this section we review some related work on teaching, observing,
and assessing software testing.
Teaching Testing. In the classroom, Desai [14] acknowledges the
challenges associated with introducing testing into the curriculum,

8The course we study is a required part of the CS undergraduate curriculum, and we
included all consenting students (>96%) enrolled in the course as subjects.

and notes that regular, reinforced learning of testing might be
better than only an introduction to it at the start of the semester.
Jones [25], Edwards [15, 16] and others [35, 36] have worked toward
introducing testing into the curriculum. Unfortunately, most prior
work in this area tends to focus on novice programmers working
on small projects, where the benefits of testing are not readily
apparent [5], and on ‘after-the-fact’ feedback. In this paper, we
study advanced students working on larger, more complex projects,
and we work toward a long-term goal of continuous feedback and
self-correction on the testing process.
ObservingTestingBehavior.The TestMyCode (TMC) plugin [39]
for NetBeans records events whenever the student saves, runs, or
tests code using instructor-provided tests. Hosseini et al. [23] make
use of this plugin in an attempt to reason about how students check
their work as they program. In contrast, this work focuses on data
about students’ testing habits, i.e., how they go about writing and
running their own software tests.
Assessing Testing. Beller et al. [8–10] developed WatchDog, a
family of IDE plugins to capture and assess software testing. Using
these data, they found that most professional and student develop-
ers do not practice testing actively and that solution code and test
code do not co-evolve gracefully. WatchDog assesses how closely
developers followed a given testing methodology. Our metrics al-
low feedback for how students balance and sequence testing effort
regardless of whether they follow (or not) a specific methodology.

Industrial case studies measuring the effects of TDD [11, 30, 40]
tend to focus on a single implementation of a large project. As a
consequence, comparisons to other projects are difficult and these
studies are rarely replicated. Other existing studies do controlled
experiments, which tend to involve many implementations, but
they focus on learning about a specific testing methodology which
is used by the developers for the whole duration of the study [18–
20, 24]. In this paper, we study a different setting, in which students
may follow various testing methodologies with varying rigor at
different times. In addition, we strengthen the external validity of
our results by comparing implementations of the same project from
over 100 students (for multiple projects).

8 CONCLUSION
In this paper, we presented a novel family of metrics to assess stu-
dents’ incremental testing practices. We also conducted an observa-
tional study examining the relationships of test-writing behaviors,
as measured by these metrics, on project outcomes. Our findings
support the conventional wisdom about continuously writing tests
alongside production code, but we did not find evidence to support
the notion that writing tests first leads to project success.

This work is a step toward enabling continuous feedback on
students’ programming process. Future work will include formulat-
ing and deploying feedback based on these assessments, helping
instructors to better teach incremental development.

9 ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation
under grant DUE-1245334. The authors would like to thank Jamie
Davis for valuable feedback on drafts of the paper.

Assessing Incremental Testing Practices and Their Impact on Project Outcomes SIGCSE ’19, Feb 27-Mar 2, 2019, Minneapolis, MN, USA

REFERENCES
[1] Kalle Aaltonen, Petri Ihantola, and Otto Seppälä. 2010. Mutation Analysis vs. Code

Coverage in Automated Assessment of Students’ Testing Skills. In Proceedings of
the ACM International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion (OOPSLA ’10). ACM, New York,
NY, USA, 153–160. https://doi.org/10.1145/1869542.1869567

[2] Maurìcio Finavaro Aniche. 2018. RepoDriller. https://github.com/
ayaankazerouni/repodriller.

[3] Maurìcio Finavaro Aniche and Marco Aurélio Gerosa. 2010. Most common
mistakes in test-driven development practice: Results from an online survey with
developers. In Software Testing, Verification, and Validation Workshops (ICSTW),
2010 Third International Conference on. IEEE, 469–478. https://doi.org/10.1109/
ICSTW.2010.16

[4] Dave Astels. 2003. Test driven development: A practical guide. Prentice Hall
Professional Technical Reference.

[5] Elena García Barriocanal, Miguel-Ángel Sicilia Urbán, Ignacio Aedo Cuevas, and
Paloma Díaz Pérez. 2002. An Experience in Integrating Automated Unit Testing
Practices in an Introductory Programming Course. SIGCSE Bull. 34, 4 (Dec. 2002),
125–128. https://doi.org/10.1145/820127.820183

[6] Douglas Bates, Martin MÃďchler, Ben Bolker, and Steve Walker. 2015. Fitting
Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, Articles
67, 1 (2015), 1–48. https://doi.org/10.18637/jss.v067.i01

[7] Kent Beck. 2003. Test-driven development: by example. Addison-Wesley Profes-
sional.

[8] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, How, and Why Developers (Do Not) Test in Their IDEs. In Proceedings of
the 2015 10th JointMeeting on Foundations of Software Engineering (ESEC/FSE 2015).
ACM, New York, NY, USA, 179–190. https://doi.org/10.1145/2786805.2786843

[9] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2015. How (Much) Do
Developers Test?. In Proceedings of the 37th International Conference on Software
Engineering - Volume 2 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 559–562.

[10] Moritz Beller, Igor Levaja, Annibale Panichella, Georgios Gousios, and Andy
Zaidman. 2016. How to Catch ’Em All: WatchDog, a Family of IDE Plug-ins
to Assess Testing. In Proceedings of the 3rd International Workshop on Software
Engineering Research and Industrial Practice (SER&IP ’16). ACM, New York,
NY, USA, 53–56. https://doi.org/10.1145/2897022.2897027

[11] Thirumalesh Bhat and Nachiappan Nagappan. 2006. Evaluating the Efficacy
of Test-driven Development: Industrial Case Studies. In Proceedings of the 2006
ACM/IEEE International Symposium on Empirical Software Engineering (ISESE ’06).
ACM, New York, NY, USA, 356–363. https://doi.org/10.1145/1159733.1159787

[12] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu. 2009.
The promises and perils of mining git. In 2009 6th IEEE International Working
Conference on Mining Software Repositories. 1–10. https://doi.org/10.1109/MSR.
2009.5069475

[13] Kevin Buffardi and Stephen H. Edwards. 2014. A Formative Study of Influences on
Student Testing Behaviors. In Proceedings of the 45th ACM Technical Symposium
on Computer Science Education (SIGCSE ’14). ACM, New York, NY, USA, 597–602.
https://doi.org/10.1145/2538862.2538982

[14] Chetan Desai, David Janzen, and Kyle Savage. 2008. A Survey of Evidence for
Test-driven Development in Academia. SIGCSE Bull. 40, 2 (June 2008), 97–101.
https://doi.org/10.1145/1383602.1383644

[15] Stephen H. Edwards. 2003. Improving Student Performance by Evaluating How
Well Students Test Their Own Programs. J. Educ. Resour. Comput. 3, 3, Article 1
(Sept. 2003). https://doi.org/10.1145/1029994.1029995

[16] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Auto-
matically Grading Programming Assignments. In Proceedings of the 13th Annual
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’08). ACM, New York, NY, USA, 328–328. https://doi.org/10.1145/1384271.1384371

[17] Stephen H. Edwards, Zalia Shams, Michael Cogswell, and Robert C. Senkbeil.
2012. Running Students’ Software Tests Against Each Others’ Code: New Life
for an Old "Gimmick". In Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education (SIGCSE ’12). ACM, New York, NY, USA, 221–226.
https://doi.org/10.1145/2157136.2157202

[18] Hakan Erdogmus, Grigori Melnik, and Ron Jeffries. 2010. Test-Driven Develop-
ment.

[19] D. Fucci, H. Erdogmus, B. Turhan, M. Oivo, and N. Juristo. 2017. A Dissection of
the Test-Driven Development Process: Does It Really Matter to Test-First or to
Test-Last? IEEE Transactions on Software Engineering 43, 7 (July 2017), 597–614.
https://doi.org/10.1109/TSE.2016.2616877

[20] Davide Fucci, Giuseppe Scanniello, Simone Romano, Martin Shepperd, Boyce
Sigweni, Fernando Uyaguari, Burak Turhan, Natalia Juristo, and Markku Oivo.
2016. An external replication on the effects of test-driven development using
a multi-site blind analysis approach. In Proceedings of the 10th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement. ACM,
3.

[21] M. Ghafari, C. Ghezzi, and K. Rubinov. 2015. Automatically identifying focal
methods under test in unit test cases. In 2015 IEEE 15th International Working

Conference on Source Code Analysis and Manipulation (SCAM). 61–70. https:
//doi.org/10.1109/SCAM.2015.7335402

[22] Michael H. Goldwasser. 2002. A Gimmick to Integrate Software Testing Through-
out the Curriculum. In Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’02). ACM, New York, NY, USA, 271–275.
https://doi.org/10.1145/563340.563446

[23] Roya Hosseini, Arto Vihavainen, and Peter Brusilovsky. 2014. Exploring problem
solving paths in a Java programming course. (2014).

[24] Liang Huang and Mike Holcombe. 2009. Empirical investigation towards the
effectiveness of Test First programming. Information and Software Technology 51,
1 (2009), 182–194.

[25] Edward L. Jones. 2000. Software Testing in the Computer Science Curriculum –
a Holistic Approach. In Proceedings of the Australasian Conference on Computing
Education (ACSE ’00). ACM, New York, NY, USA, 153–157. https://doi.org/10.
1145/359369.359392

[26] Ayaan M. Kazerouni, Stephen H. Edwards, T. Simin Hall, and Clifford A. Shaffer.
2017. DevEventTracker: Tracking Development Events to Assess Incremental
Development and Procrastination. In Proceedings of the 2017 ACM Conference
on Innovation and Technology in Computer Science Education (ITiCSE ’17). ACM,
New York, NY, USA, 104–109. https://doi.org/10.1145/3059009.3059050

[27] Ayaan M. Kazerouni, Stephen H. Edwards, and Clifford A. Shaffer. 2017. Quan-
tifying Incremental Development Practices and Their Relationship to Procras-
tination. In Proceedings of the 2017 ACM Conference on International Comput-
ing Education Research (ICER ’17). ACM, New York, NY, USA, 191–199. https:
//doi.org/10.1145/3105726.3106180

[28] Sami Kollanus. 2010. Test-driven development-still a promising approach?. In
Quality of Information and Communications Technology (QUATIC), 2010 Seventh
International Conference on the. IEEE, 403–408. https://doi.org/10.1109/QUATIC.
2010.73

[29] Joseph Abraham Luke. 2015. Continuously Collecting Software Development Event
Data As Students Program. Master’s thesis. Virginia Tech.

[30] E Michael Maximilien and Laurie Williams. 2003. Assessing test-driven devel-
opment at IBM. In Software Engineering, 2003. Proceedings. 25th International
Conference on. IEEE, 564–569.

[31] Hussan Munir, Misagh Moayyed, and Kai Petersen. 2014. Considering rigor
and relevance when evaluating test driven development: A systematic review.
Information and Software Technology 56, 4 (2014), 375 – 394. https://doi.org/10.
1016/j.infsof.2014.01.002

[32] Glenford J Myers, Corey Sandler, and Tom Badgett. 2011. The art of software
testing. John Wiley & Sons.

[33] Shinichi Nakagawa and Holger Schielzeth. [n. d.]. A general and simple method
for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology
and Evolution 4, 2 ([n. d.]), 133–142. https://doi.org/10.1111/j.2041-210x.2012.
00261.x

[34] Zalia Shams and Stephen H. Edwards. 2013. Toward Practical Mutation Analysis
for Evaluating the Quality of Student-written Software Tests. In Proceedings
of the Ninth Annual International ACM Conference on International Computing
Education Research (ICER ’13). ACM, New York, NY, USA, 53–58. https://doi.org/
10.1145/2493394.2493402

[35] Terry Shepard, Margaret Lamb, and Diane Kelly. 2001. More Testing Should
Be Taught. Commun. ACM 44, 6 (June 2001), 103–108. https://doi.org/10.1145/
376134.376180

[36] Jaime Spacco, David Hovemeyer, William Pugh, Fawzi Emad, Jeffrey K.
Hollingsworth, and Nelson Padua-Perez. 2006. Experiences with Marmoset:
Designing and Using an Advanced Submission and Testing System for Program-
ming Courses. In Proceedings of the 11th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education (ITICSE ’06). ACM, New York, NY,
USA, 13–17. https://doi.org/10.1145/1140124.1140131

[37] Jaime Spacco and William Pugh. 2006. Helping Students Appreciate Test-driven
Development (TDD). In Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Applications (OOPSLA ’06).
ACM, New York, NY, USA, 907–913. https://doi.org/10.1145/1176617.1176743

[38] Davide Spadini, Maurìcio Aniche, and Alberto Bacchelli. 2018. PyDriller: Python
Framework for Mining Software Repositories. https://doi.org/10.1145/3236024.
3264598

[39] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel. 2013.
Scaffolding Students’ Learning Using Test My Code. In Proceedings of the 18th
ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’13). ACM, New York, NY, USA, 117–122. https://doi.org/10.1145/2462476.
2462501

[40] Laurie Williams, E Michael Maximilien, and Mladen Vouk. 2003. Test-driven
development as a defect-reduction practice. In Software Reliability Engineering,
2003. ISSRE 2003. 14th International Symposium on. IEEE, 34–45.

https://doi.org/10.1145/1869542.1869567
https://github.com/ayaankazerouni/repodriller
https://github.com/ayaankazerouni/repodriller
https://doi.org/10.1109/ICSTW.2010.16
https://doi.org/10.1109/ICSTW.2010.16
https://doi.org/10.1145/820127.820183
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1145/2786805.2786843
https://doi.org/10.1145/2897022.2897027
https://doi.org/10.1145/1159733.1159787
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1145/2538862.2538982
https://doi.org/10.1145/1383602.1383644
https://doi.org/10.1145/1029994.1029995
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1145/2157136.2157202
https://doi.org/10.1109/TSE.2016.2616877
https://doi.org/10.1109/SCAM.2015.7335402
https://doi.org/10.1109/SCAM.2015.7335402
https://doi.org/10.1145/563340.563446
https://doi.org/10.1145/359369.359392
https://doi.org/10.1145/359369.359392
https://doi.org/10.1145/3059009.3059050
https://doi.org/10.1145/3105726.3106180
https://doi.org/10.1145/3105726.3106180
https://doi.org/10.1109/QUATIC.2010.73
https://doi.org/10.1109/QUATIC.2010.73
https://doi.org/10.1016/j.infsof.2014.01.002
https://doi.org/10.1016/j.infsof.2014.01.002
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1145/2493394.2493402
https://doi.org/10.1145/2493394.2493402
https://doi.org/10.1145/376134.376180
https://doi.org/10.1145/376134.376180
https://doi.org/10.1145/1140124.1140131
https://doi.org/10.1145/1176617.1176743
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/2462476.2462501
https://doi.org/10.1145/2462476.2462501

	Abstract
	1 Introduction
	2 Proposed Metrics of Testing Effort
	2.1 Balance of Testing Effort
	2.2 Sequence of Testing Effort

	3 Research Method
	3.1 Study Setting
	3.2 Data Collection
	3.3 Data Analysis

	4 Results
	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

