
Fast and Accurate Incremental Feedback for Students’ Software Tests Using
Selective Mutation Analysis

Ayaan M. Kazerounia,∗, James C. Davisb, Arinjoy Basakc, Clifford A. Shafferc, Francisco Servantc, Stephen H.
Edwardsc,∗

aDepartment of Computer Science and Software Engineering, California Polytechnic State University
bDepartment of Electrical and Computer Engineering, Purdue University

cDepartment of Computer Science, Virginia Tech

Abstract

As incorporating software testing into programming assignments becomes routine, educators have begun to assess not
only the correctness of students’ software, but also the adequacy of their tests. In practice, educators rely on code
coverage measures, though its shortcomings are widely known. Mutation analysis is a stronger measure of test adequacy,
but it is too costly to be applied beyond the small programs developed in introductory programming courses. We
demonstrate how to adapt mutation analysis to provide rapid automated feedback on software tests for complex projects
in large programming courses. We study a dataset of 1389 student software projects ranging from trivial to complex.
We begin by showing that although the state-of-the-art in mutation analysis is practical for providing rapid feedback on
projects in introductory courses, it is prohibitively expensive for the more complex projects in subsequent courses. To
reduce this cost, we use a statistical procedure to select a subset of mutation operators that maintains accuracy while
minimizing cost. We show that with only 2 operators, costs can be reduced by a factor of 2–3 with negligible loss in
accuracy. Finally, we evaluate our approach on open-source software and report that our findings may generalize beyond
our educational context.
Keywords: Software testing, Mutation analysis, Software engineering education, Automated assessment tools

1. Introduction

Software testing is the primary approach for evaluat-
ing the correctness of computer software in practice. It is
thus critical that software engineering teams follow strong
software testing practices. Unfortunately, many software
engineers have inadequate training in testing (Lethbridge,
2000; Carver and Kraft, 2011; Radermacher and Walia,
2013). To address this shortcoming, educators have be-
gun to incorporate software testing into the software engi-
neering curriculum (Jones, 2000; Spacco and Pugh, 2006;
Aniche et al., 2019), including introductory programming
courses (Edwards, 2004). These educators provide stu-
dents with feedback not only about their software, but
also about their test suites.

To be effective, feedback on student test suites should
meet three goals. First, it should provide a reliable test ad-
equacy criterion, so that students are assessed in a mean-
ingful way. Second, it should be amenable to incremental
feedback in order to guide students throughout the devel-
opment cycle. Third, it should be fast to compute to sup-

∗Corresponding authors.
Email addresses: ayaank@calpoly.edu (Ayaan M. Kazerouni),

davisjam@purdue.edu (James C. Davis), arinjoyb@vt.edu (Arinjoy
Basak), shaffer@vt.edu (Clifford A. Shaffer), fservant@vt.edu
(Francisco Servant), edwards@cs.vt.edu (Stephen H. Edwards)

port student learning. Speediness also ensures that an ed-
ucational institution’s centralized Automated Assessment
Tool (AAT) (Pettit and Prather, 2017) is not overloaded.

Many approaches have been proposed for evaluating stu-
dent test suites (Goldwasser, 2002; Edwards, 2004; Aal-
tonen et al., 2010). Code coverage measures can pro-
vide incremental feedback and are quickly computed, but
they set a low bar for adequacy: a test may cover code
without ensuring its correctness (Myers et al., 2011; Ed-
wards et al., 2009; Aaltonen et al., 2010; Inozemtseva
and Holmes, 2014). The all-pairs approach involves
running every student’s tests against every other stu-
dent’s code (Goldwasser, 2002), improving test adequacy
but requiring relatively complete implementations (non-
incremental). These approaches do not currently meet our
goals (see Section 2.2).

Mutation analysis, proposed by DeMillo et al. (1978),
is a promising alternative feedback approach. Mutation
analysis is a fault-based test assessment technique in which
small changes (mutations) are made to the target program,
creating incorrect variants known as mutants. The differ-
ent kinds of mutations that can be applied are called muta-
tion operators. The adequacy of the test suite is measured
as the percentage of mutants caught by the test suite.

Mutation analysis mitigates the limitations of code cov-
erage approaches and all-pairs approaches. Unlike code

Preprint submitted to Journal of Systems and Software January 24, 2021

2

coverage, mutation analysis is a reliable adequacy crite-
rion for student-written software tests (Aaltonen et al.,
2010; Shams, 2015). Unlike all-pairs approaches, muta-
tion analysis can be used to provide incremental feedback.
However, it is well-known that mutation analysis is a com-
putationally expensive approach in general (Jia and Har-
man, 2011). Previous studies have found mutation analy-
sis to be a reliable adequacy criterion for student-written
software tests, but they have not studied whether muta-
tion analysis can be performed cheaply enough to provide
timely feedback in an AAT.

Our goal in this paper is to evaluate the cost of run-
ning mutation analysis on undergraduate programming
projects and to reduce it to the point where it is feasi-
ble to deploy in an AAT to provide students with rapid
incremental feedback about the quality of their tests. We
evaluate the effectiveness of our approach as we vary the
complexity of the student projects under consideration,
determining whether a scheme for projects in introduc-
tory courses (with relatively small programs) will work for
those in subsequent courses (with larger and more complex
programs). We conduct three studies:

• Motivational. We investigate the cost and effective-
ness of existing approaches to mutation analysis when
applied to students’ software projects (Section 6). We
consider the state of the art in mutation analysis:
comprehensive mutation (all available mutants) and
two selective mutation strategies: sufficient and dele-
tion mutation.

• Core. We propose a novel approach to mutation
analysis that is appropriate for use in a rapid response
automated feedback context (Section 7). We do this
by selecting a further-reduced subset of mutation op-
erators through a statistical procedure.

• Validation. We conduct an additional study to val-
idate our findings by running similar analysis, but
using a separate corpus of real-world software (Sec-
tion 8). We evaluate the effectiveness along with two
measures of cost—the number of mutants, and the
proportion of equivalent mutants—for our chosen sub-
sets of operators.

Summary of findings. Our proposed approach offers su-
perior cost-effectiveness trade-offs compared to the state of
the art. But in our context, we found that there exists a
set of two mutation operators sufficient to predict the mu-
tation coverage achieved under the full set of mutation op-
erators with R2 of up to 0.94, depending on the size of the
program under test. In other words, in terms of reliability,
our techniques perform nearly as effectively as compre-
hensive mutation analysis. And in terms of computational
cost, we halve the cost of the state of the art (mutation
by deletion), reducing the total cost of test adequacy as-
sessment from roughly 630 mutants per thousand lines of
code (KSLoC) for deletion mutation to between 230 and
330 mutants per KSLoC, depending on the program under

test. In our validation study, we found that these findings
may generalize to real-world projects as well, suggesting
potential benefits for practitioners as well as educators.

Our results indicate that using mutation operator sub-
sets is an effective approximation of much more costly mu-
tation analysis strategies for student code, and reduces the
run-time impact to a point where it is feasible to apply au-
tomatically as students check their work during solution
development. This will allow educators to provide inter-
active feedback within a reasonable response time, allow-
ing students to iterate more quickly on submission cycles,
while being held to a higher standard of test adequacy.
Since mutation analysis is a more reliable adequacy crite-
rion than commonly-used code coverage measures, this will
help students to produce stronger test suites (and there-
fore, we hope, more reliable software). This paper con-
tributes to software engineering education research and
practice by showing how mutation operators can be ap-
plied in a cost-effective way to better assess the quality of
student-written tests. Our work is thus an important step
toward improving the pedagogy of software testing.

This paper’s outline is as follows. We describe prior
work related to evaluating test quality and mutation anal-
ysis (Section 2); define goals for speedy mutation-based
feedback (Section 3); describe our research questions (Sec-
tion 4) and study context (Section 5); and describe the
methods and results for each research question (Sections 6–
8). We close with a discussion of our results (Section 9),
an assessment of threats to validity (Section 10), and a
summary of our conclusions (Section 11).

2. Background and Related Work

We first introduce the desirable properties of test assess-
ment criteria, then review prior work on the evaluation of
software test suites, and finally summarize the state of the
art in mutation analysis in the educational context.

2.1. Desirable Properties for Student Test Assessment
Our work is conducted in the context of computing ed-

ucation, where a metric for student test assessment should
meet three goals: it should enforce a strong test adequacy
criterion, it should permit incremental feedback, and it
should return a fast response.

The most desirable feature for such a metric is that it im-
pose a strong test adequacy criterion. A test adequacy
criterion is a predicate that defines “what properties of a
program must be exercised to constitute a ‘thorough’ test,
i.e., one whose successful execution implies no errors in a
tested program” (Goodenough and Gerhart, 1975). Note
that the focus of such a criterion is not the program, but
rather the tests. The stronger the test adequacy criterion,
the higher the standard to which a test suite is held. Cri-
teria of test adequacy vary in their strength. For example,
successful compilation is a weak test adequacy criterion,
statement-based code coverage is a stronger criterion, and

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

3

Technique Ref.
Strong

adequacy
criterion?

Supports
incremental
feedback?

Fast
response?

Code coverage Spacco and Pugh (2006)
Edwards (2004) × ✓ ✓

All-pairs execution

Goldwasser (2002)
Edwards et al. (2012)
Wrenn et al. (2018)
Buffardi et al. (2019)

✓ × ×

Mutation analysis Aaltonen et al. (2010)
Shams and Edwards (2013) ✓ ✓ ×⋆

Table 1: Test evaluation techniques commonly used in CS education and their strengths and weaknesses. ⋆ = Addressed in this paper.

condition-based coverage is stronger still. The stronger the
test adequacy criterion, the better the alignment between a
test suite’s actual strength and its strength as measured by
the criterion. So, satisfying a weak test adequacy criterion
does not guarantee thorough testing. Spacco et al. (2006)
and Shams (2015) report that students’ high code coverage
scores were not correlated with bug-free software—this has
also been observed in non-educational settings (Inozemt-
seva and Holmes, 2014).

Incremental feedback has been found to improve stu-
dent learning outcomes (Black and Wiliam, 1998; Ed-
wards, 2004), and is therefore a desirable quality for an
assessment metric. Rather than deferring feedback un-
til their final submissions, incremental feedback permits
students to gauge their progress and identify their errors
along the way. It is thus becoming standard practice in
computer science education (Pettit and Prather, 2017).

Providing a fast response is valuable for pedagogi-
cal and practical reasons. Pedagogically, fast feedback
(seconds, not minutes) has been found to improve stu-
dent learning (Azevedo and Bernard, 1995; der Kleij et al.,
2015). Performance is also of practical concern in an edu-
cational context, because student submissions are typically
assessed on a single centralized server shared among all
CS courses at an institution. These servers are known as
Automated Assessment Tools (AATs), and include Web-
CAT (Edwards, 2004), Athene (Pettit et al., 2015), and
others (Jackson and Usher, 1997; Spacco and Pugh, 2006;
Wang et al., 2011; Papancea et al., 2013). AATs are cen-
tralized to ensure a trusted computing base, making them
a reliable source of student scores. At institutions that
offer incremental feedback, each student may make many
dozens of submissions per assignment to the institution’s
AAT, with bursty traffic near due dates (Edwards et al.,
2009). Lower computational cost for the feedback reduces
the risk that these AATs will be overloaded.

2.2. Existing Measures of Student Test Quality
Educators have explored three principal measures of stu-

dent test quality: code coverage, all-pairs comparisons,
and mutation analysis. None of these measures currently
meets our goals for a student test assessment metric (Ta-
ble 1).

Code coverage is fast to compute and supports incre-
mental feedback. However, it is not a strong test adequacy
criterion. It is satisfied simply when tests “cover” the
code, whether or not they confirm that the code works
correctly (Aaltonen et al., 2010; Edwards and Shams,
2014; Inozemtseva and Holmes, 2014). That is, even
strong code coverage measures (like condition coverage or
MC/DC) are insensitive to the assertions that appear in
software tests. These measures are an effective tool for
professional engineers (Ivanković et al., 2019), but like
any tool they can be used incorrectly. For example, stu-
dents often use “pathological” tests to achieve high cov-
erage while only making assertions about (i.e., properly
testing) small aspects of the desired functionality (Shams,
2015). Used this way, coverage measures do not give a
student actionable feedback.

The all-pairs approach—in which a student’s tests
are run against every other student’s code (Goldwasser,
2002)—is a reliable test adequacy criterion (Edwards and
Shams, 2014), but it can be slow to compute (Shams,
2015) and is not amenable to incremental feedback. All-
pairs testing requires several completed, compatible ver-
sions of each piece of a project. Compatibility is ensured
when projects are scaffolded (e.g., lower-level courses), but
in most upper-level courses students are given only the
system-level I/O requirements and take responsibility for
designing their own components and internal APIs. Since
students’ tests and solutions are typically not completed
until the deadline (Kazerouni et al., 2017, 2019), there
would be little opportunity for feedback during the devel-
opment process.

Mutation analysis (DeMillo et al., 1978) is a provably
strong test adequacy criterion (Wong and Mathur, 1995;
Offutt and Voas, 1996), and like code coverage it supports
incremental feedback with relatively low human cost. How-
ever, comprehensive mutation analysis is prohibitively ex-
pensive computationally. But while the shortcomings of
code coverage and the all-pairs approach appear to be fun-
damental, the cost of mutation analysis may be reduced.
Next, we discuss research to this end.

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

4

2.3. Reducing the Cost of Mutation Analysis

The idea of mutation analysis is to inject micro-faults
into the target program, and then determine whether the
test suite can identify the change in behavior (DeMillo
et al., 1978). Faults are injected using mutation operators
to create (presumably) incorrect variants called mutants.
Mutation frameworks use mutation operators to target dif-
ferent aspects of the program when it is represented as an
AST. For example, frameworks provide mutation opera-
tors for arithmetic expressions, return values, and condi-
tion predicates, among others (King and Offutt, 1991).
The resulting mutants have been found to be valid substi-
tutes for “real” faults (Andrews et al., 2005; Just et al.,
2014). After creating mutants, a test suite’s adequacy can
be measured in terms of its mutation coverage by calcu-
lating the proportion of mutants that it detects.

Mutation analysis is costly. Applying a full set of mu-
tation operators to a non-trivial program can yield thou-
sands or millions of mutants, and running the test suite
for each mutant is computationally intensive. This pro-
cess can also exact considerable human cost, since a soft-
ware tester must design tests that are able to detect all
or most of the mutants that are produced. Exacerbating
this situation is the possibility of producing an equivalent
mutant, i.e., a mutant that is functionally identical to the
original program and thus will not affect the test suite’s
results. Equivalent mutants represent wasted work; these
“false positives” do not help assess or improve a test suite,
and must in general be filtered out manually (Budd and
Angluin, 1982).

Considerable effort has been devoted to reducing the
cost of mutation analysis. Jia and Harman (2011) catego-
rized these efforts into: 1) “Do fewer”, reducing the num-
ber of generated mutants, and 2) “Do faster”, reducing
the execution cost in other ways (e.g., avoiding I/O). We
are concerned with mutant reduction techniques, specifi-
cally the technique of selective mutation (Mathur, 1991),
which reduces the number of mutation operators to trade
completeness for lower costs.

Among selective mutation approaches, two are promi-
nent: the sufficient set (Offutt et al., 1996) and the dele-
tion set (Untch, 2009). The sufficient set was introduced
by Offutt et al. (1996), who showed that a subset of
the Mothra mutation operators (King and Offutt, 1991)
would yield results comparable to comprehensive muta-
tion, bringing with it considerable cost savings. While
statement deletion was available in the first mutation sys-
tems (King and Offutt, 1991), using it as a sole mode
of mutation was first proposed by Untch (2009). Dela-
maro et al. (2014) expanded this idea to include operators
that delete different aspects of the target program (e.g.,
statements, conditions, and variables). Subsequent evalua-
tions of the deletion set have been promising, showing that
the deletion set yields substantially fewer mutants than
the sufficient set with a minor loss in the accuracy of its
test adequacy compared to comprehensive mutation (Deng

et al., 2013; Delamaro et al., 2014). Mutation by deletion
is a promising path toward practical and scalable mutation
testing. However, neither the sufficient set nor the dele-
tion set have been evaluated in an educational context for
large classes with complex projects, and we present data
in Section 6.1 to show that neither is fast enough for our
purposes.

2.4. Mutation Analysis in Education
In spite of its virtues, mutation analysis has seen little

use or evaluation in the context of student assessment and
feedback. Its high computational cost is a critical limiting
factor for automated assessment, since it could delay feed-
back and thus degrade learning outcomes (Azevedo and
Bernard, 1995; der Kleij et al., 2015). This cost hinders
research into the potential pedagogical benefits of muta-
tion analysis (e.g., its utility as a form of feedback, not just
assessment). This paper enables such work by allowing
for fast and accurate incremental feedback using mutation
analysis.

There have been few efforts to apply mutation analysis
in an educational setting. Aaltonen et al. (2010) reported
that mutation analysis revealed deficiencies in students’
testing that were not revealed by code coverage. However,
their work only considered using mutation analysis non-
incrementally (for grading purposes), and did not consider
its deployment costs. These costs are of significant concern
if an AAT provides students with feedback as they work.
Shams and Edwards (2013) explored the use of mutation
analysis in novice programming courses, and also com-
pared the cost-effectiveness of various selective mutation
approaches with other measures of test quality (Edwards
and Shams, 2014). They found that statement deletion
was the most cost-effective mutation-based test adequacy
criterion, which partially influenced our experimental de-
sign. However, the cost of mutation by deletion has not
been evaluated for the common educational context of au-
tomated assessment systems, and its accuracy as a test
adequacy criterion has only been evaluated on software
produced by novice CS students.

We build on these efforts in two ways. First, we exam-
ine the cost-effectiveness of various mutation approaches in
the “production” educational context of an AAT, with its
accompanying performance constraints. Second, we apply
our analysis to a large corpus of student projects with a
substantially wider range of size and complexity than has
previously been considered. In this context, we find that
existing techniques are inadequate. However, through sta-
tistical selection we can reduce the cost of mutation anal-
ysis by 50% compared to the deletion subset (and by 90%
compared to comprehensive mutation), with only a minor
degradation of the test adequacy criterion.

2.5. Mutation Analysis Tools for Java
Our institution uses Java as the primary programming

language, so we sketch the landscape of Java mutation

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

5

testing tools. Prominent among these are: µJava (Ma
et al., 2005), Javalanche (Schuler and Zeller, 2009), MA-
JOR (Just et al., 2011), and PIT (Coles et al., 2016). Ab-
stractly, they all follow the same two-stage process: (1)
Generate mutants, and (2) Run test suites to see if the
mutants are detected. Some of these tools target a par-
ticular language version (e.g., if they mutate source-level
constructs).

Due to language version constraints, µJava and
Javalanche are unsuitable in our context. µJava and
Javalanche target Java 6, which is no longer support by
either OpenJDK or Oracle. Our students use Java 8 or
later in their projects. We attempted to use µJava on these
projects, but it exhibited many errors. Javalanche has also
exhibited issues on similar code-bases (Delahaye and du
Bousquet, 2013; Gopinath et al., 2017). Upgrading µJava
and Javalanche was out of scope for our work. Other,
less prominent tools for Java mutation testing have also
been considered by researchers (Delahaye and du Bous-
quet, 2013; Gopinath et al., 2017), and found to be un-
suitable for larger or newer projects for various reasons.
We thus focus our discussion on the newer mutation test-
ing tools, PIT and MAJOR.

We compare PIT and MAJOR along two axes: effec-
tiveness and speed. Effectiveness is determined by a tool’s
fault-revelation capability, dictated by which mutants it
generates. Studies have found PIT more effective than
MAJOR (Gopinath et al., 2017; Kintis et al., 2018).

Speed is determined by algorithmic and implementation
decisions. There has been no empirical speed comparison
between PIT and MAJOR. However, based on our study
of their designs, we do not expect a substantial speed dif-
ference. To generate mutants, both tools manipulate the
program representation in-memory within a single JVM
instance. To detect mutants, both tools filter tests using
line coverage and prioritize them using testing execution
time. As a result, each tool detects a mutant using the
fastest covering unit test.

3. Goals and Constraints

Here we contextualize our study in modern AATs, and
define what constitutes fast-enough test suite feedback in
such an AAT. AATs tend to handle substantial through-
put, particularly when they provide students with inter-
mediate feedback on incremental submissions. It is imper-
ative that any mutation analysis strategy used in an AAT
supports a reasonable response time, both so that students
can make appropriate use of intermediate feedback, and so
as not to degrade the AAT during times of heavy load.

In order to provide real-world context for this study, we
describe our AAT’s hardware configuration, throughput,
and the processing for a typical submission. At our insti-
tution, we use the AAT Web-CAT (Edwards, 2004) served
using a machine running CentOS 7 with two 16-core 2.60
GHz Intel Xeon Gold 6142 CPUs and 256 GB RAM. The
persistent storage was two 600 GB, 10,000 RPM Hitachi

HDDs. Our experiments are memory and compute bound.
Because PIT operates only on byte-code in memory, disk
accesses only take place to access the compiled bytecode
before analysis and to write out results after analysis. All
analyses in this paper were run on a separate machine with
identical specifications. Day-to-day usage of the AAT did
not affect our experiments.

Our institution’s AAT server (serving the AAT Web-
CAT Edwards (2004)) is shared by many courses at our
institution, and is also used by several other institutions.
Our AAT has a steady-state load of hundreds of daily
student users, peaking around 2,000 daily users. These
users drive a steady state throughput of 11 submissions
per minute, or about 1 submission every 5 seconds. During
submission bursts near assignment deadlines, our AAT re-
ceives 39 submissions per minute, or a submission every 1.5
seconds. The AAT requires a median of 13 seconds to gen-
erate full submission feedback for a submission, including
compilation, static analysis, instructor-written reference
tests, and test adequacy assessment—currently bytecode-
level statement and condition coverage.

In light of this load, our AAT handles one submission
per core, leaving some cores idle for the user interface and
database functionality for interactive services. Though
mutation analysis is an easily parallelizable problem, par-
allel processing for a single submission is unattractive: us-
ing up cores to process a single submission would only
transfer the slow-down from time spent processing to time
spent waiting to be processed.

While it is desirable to minimize any increase in pro-
cessing time, using a more reliable test adequacy criterion
makes some increase inevitable. In contrast to code cov-
erage, which requires executing student-written software
tests only once, mutation-based feedback involves running
software tests once per mutant, substantially increasing
the processing time for each submission. Our experience
with AAT usage and our understanding of student inter-
actions with feedback suggest that increasing the delay
in feedback response by minutes would be unacceptable
to users. Such a delay would also substantially reduce
throughput, to a degree prohibitive to address through ad-
ditional hardware investments. However, we believe that
adding a significantly smaller amount of time—perhaps 30
seconds or less—would approach the realm of feasibility.
Additional measures (increased parallelism, faster hard-
ware, more sophisticated cloud deployment, etc.) may still
be needed to reach desirable peak throughput. In short, we
want mutation-based test adequacy feedback to add fewer
than 30 seconds to the feedback generation time for a sin-
gle student submission, where smaller costs are definitely
more desirable.

This goal of “fewer than 30 seconds” is specific to our
institutional context—our hardware, software, and stu-
dents. However, institutional needs vary. We explore a
continuum of selective mutation approaches that could be
tailored to institutional needs, budgets, and other factors.
For example, an institution with slower hardware might

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

6

opt for computationally cheaper but less reliable mutation
approaches. And for institutions with the budget for faster
hardware or managed cloud clusters, more reliable and
costly approaches would be within reach. Our approach
can help institutions make an informed choice appropriate
to their context.

4. Research Questions

We now describe the three empirical studies that we con-
ducted. They were designed to provide a mechanism to
evaluate student-written test suites using mutation anal-
ysis that is feasible for use in an AAT while remaining a
reliable test adequacy criterion. For each study, we iden-
tify the research questions that it was meant to address.

4.1. Motivational study: Evaluating existing selective mu-
tation approaches for use in an AAT

RQ1: How efficient is comprehensive mutation analysis
at providing automated feedback on test suites? We study
whether it is actually necessary to improve the efficiency
of mutation analysis for student code. It may be that the
smaller size of these projects allows mutation analysis to
offer test suite assessment within our running time goal.
We evaluate the efficiency of using mutation analysis for
automated feedback in terms of the time taken for indi-
vidual submissions to generate mutation analysis results.
We interpret results in terms of running time on the AAT
server at our institution.

RQ2: Are existing selective mutation approaches cost-
effective alternatives to comprehensive mutation? We
evaluate the sufficient (Offutt et al., 1996) and dele-
tion (Delamaro et al., 2014) sets of operators for their
feasibility in providing automated incremental feedback.
Shams (2015) evaluated these subsets of operators on
projects produced by novice programmers, and found
statement deletion to be a cost-effective approach. We be-
lieve this result is promising, so we conduct an evaluation
of the sufficient and deletion operators set on a more gen-
eral corpus of student codebases, with submissions span-
ning a wider range of size and complexity.

4.2. Core study: Proposing new mutation approaches that
are viable for use in an AAT

RQ3: Can the cost of mutation by deletion be reduced
further while maintaining effectiveness? Even though mu-
tation by deletion represents notable runtime savings over
comprehensive and sufficient mutation, it may be possible
to reduce this cost further without sacrificing too much in
assessing test suite adequacy.

RQ4: How do the benefits of different mutation strate-
gies vary by project size? Our analyses were conducted
on a diverse set of programs, based on size and complexity
(and therefore in terms of the mutants produced). We in-
vestigate whether our chosen selective mutation strategies
vary in terms of cost-effectiveness based on the size of the

projects under test. This would allow educators to make
a more informed choice of operator subset to use for test
suite evaluation.

4.3. Validation study: Evaluating proposed mutation ap-
proaches using an unrelated dataset

RQ5: How do our proposed mutation strategies perform
in terms of cost-effectiveness against a separate validation
dataset? Although our analyses were conducted on a large
corpus of submissions to several assignments, it is possible
that our results do not generalize beyond our specific ed-
ucational context. To address this, we conducted an addi-
tional validation study to evaluate the cost-effectiveness of
our proposed mutation operator subsets running on a sep-
arate dataset published by Kintis et al. (2016), including
real-world projects and projects from the mutation testing
literature.

5. Study Context

5.1. Project corpuses under test
In our Motivational and Core studies, we examined Java

projects developed by students enrolled in second-year
(CS2) and third-year (CS3) Data Structures courses at
a large public university in the US. These students have
taken either 1 or 2 (depending on the corpus) prerequi-
site Java courses, each one of which has included JUnit
testing in programming assignments. Therefore, students
have the declarative knowledge needed to write JUnit tests
(i.e., familiarity with the framework), but they may not
have the procedural knowledge required to write strong test
suites. Students were required to write unit tests for their
projects, and part of their grade depended on the quality
of their test suites (as measured by code coverage criteria).

We analyze a submission corpus that contains 1389 final
submissions to seven programming projects. Descriptions
of the assignments and the corpus are presented in Ta-
ble 2. The CS2 sub-corpus (1019 submissions) consists
of submissions to four programming assignments requiring
students to implement and test a simple data structure,
e.g., a stack or a queue. Students were given two to three
weeks to work on each assignment. The CS3 sub-corpus
(370 submissions) consists of submissions to three more-
complex programming assignments. Students were given
four weeks to work on each assignment.

This corpus is noteworthy for its scale and for the
range of complexity within. This corpus contains around
2–3x the number of projects examined in other studies
on mutation analysis for education, along a substantially
wider range of size and complexity. Previous studies—e.g.,
Aaltonen et al. (2010); Shams and Edwards (2013); Ed-
wards and Shams (2014)—have focused on smaller, simpler
projects from introductory programming courses, compa-
rable only to the first 2 projects out of our corpus of 7
(i.e., to the first 671 submissions out of our corpus of 1389
submissions).

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

7

Description n LoC Cyc. Comp. # Classes # Mutants

(data structures implemented) µ σ µ σ µ σ µ σ

1 Bag 350 139.20 13.84 26.87 1.61 2.00 0.00 470.16 32.60

2 Linked stack 321 204.29 22.85 38.50 2.94 3.97 0.17 421.44 38.05

3 Array-based queue 259 448.00 39.71 104.00 7.58 6.00 0.10 1651.54 126.83

4 Linked list 89 718.02 221.53 147.38 53.78 8.52 2.99 2988.94 1491.91

5 Hash table, doubly-linked list, memory
pool

128 724.26 142.33 152.38 32.40 7.82 1.97 3377.76 776.02

6 Hash table, sparse matrix 133 946.56 178.69 202.17 38.77 8.06 1.97 3244.17 785.65

7 Bintree, skip-list 109 1263.18 303.22 261.96 73.89 15.84 3.35 6095.79 1952.25

Total 1389 650,515 136,763 8088 2,521,871

Table 2: Programming tasks undertaken by students in our sample, and descriptions of their implementations. # Mutants indicates the
number of mutants generated under the FULL set. Projects 1–4 are CS 2 projects, and 5–7 are CS 3 projects.

In our Validation study we analyzed a separate dataset
of 12 methods from 6 projects, published by Kintis
et al. (2016). In addition to the codebases being tested,
the dataset includes mutants and mutation-adequate test
suites. More details may be found in Section 8.

5.2. Language and tooling

We focus on testing Java programs, since Java is widely
used in introductory and advanced programming courses
at the secondary and post-secondary levels. Furthermore,
the Java ecosystem has good testing frameworks (e.g., JU-
nit) and many tools for assessing suites using various mu-
tation operators. We used PIT (Coles et al., 2016), the
state-of-the-art mutation testing system for the JVM, to
conduct mutation analysis.

As noted in Section 2.5, multiple studies have found PIT
to be the most effective in terms of fault-revelation capabil-
ity (Gopinath et al., 2017; Kintis et al., 2018). The initial
release of PIT was comparable to MAJOR and µJava (Kin-
tis et al., 2016). Kintis then collaborated with Coles — the
PIT author — and others to augment PIT with additional
mutation operators. Kintis et al. (2018) showed that the
updated PIT was more effective at fault revelation than
µJava and MAJOR combined. Thus, the current version
of PIT (v1.5.2) offers the strongest test adequacy crite-
rion currently available for Java programs. We used this
version in our experiments.

Building on the past performance of deletion operators
(Section 2.2) in other languages and tools, and on PIT’s
current dominance of the Java mutation testing space in
terms of cost and reliability (Section 2.5), we have ana-
lyzed selective mutation using PIT with the goal of fur-
ther reducing the cost of mutation testing while maintain-
ing performance on par with the comprehensive set of PIT
operators.

P1 P2 P3 P4 P5 P6 P7
Project #

200

400

600

800

1000

1200

1400

1600
So

ur
ce

 L
in
es

 o
f C

od
e
(S
Lo

C) CS 2
CS 3

Figure 1: Our corpus contains submissions to assignments of increas-
ing sizes (source lines of code). Whiskers indicate the 5th and 95th

percentiles.

5.3. Data preparation
We took several steps to prepare the corpus of students’

submissions for analysis. Notice in Table 2 that the dataset
is biased toward smaller, simpler projects. Nearly half of
all submissions belong to Project 2 or 3 in the CS2 corpus.
Submissions in the CS3 corpus—which are substantially
larger and more complex—would not be well-represented
by corpus-wide descriptive statistics, but they are critical
to understanding the scalability of our approach.

Therefore, we split the corpus of submissions into groups
based on program size. Splitting was performed us-
ing Jenks (1977) natural breaks optimization—a varia-
tion of K-Means clustering (Lloyd, 1982) simplified for
1-dimensional data. The main idea behind this splitting
technique is to 1) maximize the variance between groups,
and 2) minimize the variance within groups.

We used goodness of variance fit (GVF) to determine the
appropriate number of splits. This measure is directly pro-
portional to between-group variance, and inversely propor-
tional to within-group variance (Jenks, 1967). Therefore,
we would like to maximize it. To determine the appropri-

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

8

0 500 1000 1500 2000 2500
Source Lines of Code (SLoC)

0

25

50

75

100

125

150

175

of
 S
ub

m
iss

io
ns
 (n

 =
 1
38

9)

34
1
SL
oC

66
6
SL
oC

10
97

 S
Lo
C

Submission Group
SG1 (n=672)
SG2 (n=353)
SG3 (n=245)
SG4 (n=119)

Figure 2: Groups of submissions based on SLoC. Dashed lines indi-
cate group boundaries.

ate number of splits k, we applied the Jenks algorithm for
increasing values of k from 2 to 7 and plotted the GVF
for each splitting. The diminishing improvements in GVF
indicated k = 4 to be an appropriate number of splits for
this dataset. The four submission groups SG1–SG4 and
their intervals are depicted in Figure 2.

The makeup of the submission groups generally follows
the averages given in Table 2. We report the “major”
occupants of each submission group (i.e., course projects
that account for ≥ 10% of the submission group). SG1
consisted entirely of submissions to early projects in CS2
(#1 and #2 in Table 2), more or less evenly split. SG2
and SG3 included submissions from both courses. SG2
contained submissions to projects #3 (73%), #4 (10%),
and #5 (14%). SG3 contained submissions to projects #4
(20%), #5 (31%), and #6 (42%). Finally, SG4 was entirely
from CS3, consisting of submissions to projects #6 (23%)
and #7 (72%).

5.4. Measuring the cost of a selective mutation approach

In the following sections, we evaluate the cost of sev-
eral existing and proposed selective mutation analysis ap-
proaches. We use two measures of cost: the computational
cost and the running time cost.

Computational cost was measured as the number
of mutants produced per thousand source lines of code
(KSLoC). This cost indicates the number of times a
project’s test suite needs to be run to conduct mutation
analysis, giving an idea of the relative cost of a given sub-
set of operators.

We also measured the running time cost of existing
and proposed selective operator subsets on a server that is
similar to a real-world AAT setup (see Section 3 for hard-
ware specifications). This gives us an idea of the amount
of time a student might wait between making a submission
to the AAT and receiving feedback about their test suite.

We note that—since our corpus contains final
submissions as opposed to intermediate, incomplete
submissions—our cost measurements represent upper
bounds on the cost of producing mutation-based incremen-
tal feedback. Final submissions are likely to contain more
code and therefore to produce more mutants than interme-
diate submissions. However, we report that intermediate
submissions are not far removed from final submissions in
terms of size (and therefore in terms of the expected cost
of mutation analysis). For example, the median student’s
median submission in the CS3 course contained 96% of
the total LoC that would appear in their final submission.
This number indicates that most submissions cost approx-
imately what our measurements on final submissions im-
ply. The large proportion may be explained by students’
tendencies to make many submissions in quick succession
near deadlines to check if small changes help them to pass
all of the instructor-written tests.

6. Motivational study: Evaluating existing muta-
tion approaches

6.1. RQ1. How efficient is comprehensive mutation anal-
ysis at providing automated feedback on test suites?

In this section we evaluate the computational and run-
ning time cost of applying a comprehensive set of muta-
tions to our corpus of target programs, in terms of the
time taken to generate feedback on their test suites. We
interpret results in terms of our desired performance goals.

6.1.1. Method
We define the FULL set of PIT operators to be all those

used in the comparison of PIT with µJava and MAJOR
by Kintis et al. (2018) (see Table 4 in the reference), with
some minor optimizations. Specifically, we omitted opera-
tors that would, by their definitions, perform the same mu-
tations that would be performed by other operators (dupli-
cate mutants). For example, the ROR operator, which was
added to PIT by Kintis et al., produces a superset of the
mutants that the ConditionalsBoundary and NegateCon-
ditionals operators produce. ROR replaces occurrences
of comparison operators with all other comparison oper-
ators. For example, the < operator would be systemati-
cally replaced by <=, >, >=, ==, and !=, for a total of
5 mutants. On the other hand, the ConditionalsBoundary
operator would only replace it with <=, and NegateCon-
ditionals would only replace it with its negation (>=).
Clearly, the mutants produced by these operators are du-
plicates of those created by ROR. We likewise omitted the
PrimitiveReturns and FalseReturns operators (which are
⊆ NonVoidMethodCalls), and the InvertNegatives opera-
tor (⊆ ABS). Finally, we omitted a subclass of the AOR
operator (AOR1, according to PIT’s nomenclature), which
would duplicate mutants produced by the Math operator.

We measured the computational cost and running time
cost of mutation analysis using the FULL set using the two

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

9

Approach PIT
Operators Ref. Evaluated

FULL All in Table 4 in Kintis et al.
(2018), omitting
{ConditionalsBoundary,
NegateConditionals,
PrimitiveReturns,
FalseReturns, InvertNegatives,
AOR1 }

DeMillo et al. (1988) RQ1

SUFFICIENT AOR, ROR, ABS, UOI Offutt et al. (1996) RQ2

DELETION RemoveConditionals, AOD,
NonVoidMethodCalls,
VoidMethodCalls,
MemberVariable,
ConstructorCalls

Delamaro et al. (2014) RQ2, RQ3

2-op Subset of DELETION RemoveConditionals, AOD ⋆ RQ4, RQ5

1-op Subset of DELETION RemoveConditionals ⋆ RQ4, RQ5

Table 3: Selective mutation approaches evaluated for use in an AAT in this paper, including the incremental subsets evaluated in Section 7.2.
The Ref. column refers to the first proposal of the specified subset. ⋆ = Proposed in this paper.

measures of cost defined in Section 5.4. Cost was measured
separately for each group of submissions.

We do not evaluate the FULL set of operators for its accu-
racy at measuring a test suite’s adequacy (defect-detection
capability). Comprehensive mutation analysis has been
empirically shown to be a reliable measurement of test ad-
equacy (Offutt, 1992; Andrews et al., 2005; Just et al.,
2014). The FULL set as described here has been shown
to be the strongest set of mutation operators available for
Java programs (Kintis et al., 2018). Accordingly, a test
suite’s mutation coverage according to the FULL set of PIT
operators is the best available proxy for its adequacy.

Mutation analysis was run on 1389 submissions, and
results and running times were collected for each submis-
sion. Due to the size of the corpus, we did not attempt
to manually exclude equivalent mutants from the corpus
(see Section 10). Mutants were treated as detected if a test
case failed or timed out when running on the mutant. Test
timeouts were determined using PIT’s default settings—a
test was treated as timing out if the execution time ex-
ceeded t ∗ 1.25 + 4000 milliseconds, where t is the normal
execution time of the test case, measured before running
mutation analysis.

The percentage of timed-out mutants was not uniform
across submission groups. Submissions in SG3 had a
higher percentage of mutants that timed out (2.18%), rel-
ative to the other groups (0.24% in SG1, 0.91% in SG2,
and 1.37% in SG4). The result is that running times for
submissions SG3 were higher than one might expect given
the number of mutants they produced. We discuss this
further in Section 10.

6.1.2. Result
Mutation analysis using the FULL set is not effi-

cient enough for incremental feedback on medium-
to-large projects. Results are summarized in Figure 3,
which also summarizes results from RQ2 (Section 6.2).
For smaller projects (those in submission group SG1),
analysis took a median of 16 seconds to run per submission.
Unsurprisingly, running time was higher for the larger sub-
missions. Mutation analysis on submissions groups SG2,
SG3, and SG4 ran in 84 seconds, 283 seconds, and 325
seconds respectively. Such slow feedback times are less
likely to help students to actively identify weaknesses in
their test suites as they develop projects. Such running
times would also impose an unacceptable additional load
on an AAT. Recall that parallelizing mutation analysis for
a single submission is precluded since multiple server cores
are already in use to process multiple submissions at once
(see Section 3).

6.2. RQ2. Are existing selective mutation approaches cost-
effective alternatives to comprehensive mutation?

Having found that the FULL set of PIT operators is not
efficient enough for incremental feedback in AATs, next we
evaluate the cost-effectiveness of two operator subsets from
the literature: the SUFFICIENT set and the DELETION set.
Shams (2015) found both subsets to be reliable at mea-
suring the adequacy of test suites produced by novices,
and found statement deletion to be cost-effective. How-
ever, the costs of these subsets have not been evaluated for
the common educational context of automated assessment
systems, and their accuracy as test adequacy criteria has
only been evaluated on software produced by novice CS
students (i.e., like those in the CS2 corpus). We evaluate

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

10

and compare the performance of sufficient and deletion op-
erators with that of the FULL set of operators (Section 6.1),
analyzing projects from a wider range of sizes, complexi-
ties, and opportunities for mutation.

6.2.1. Method
The SUFFICIENT set of PIT operators, proposed by Of-

futt et al. (1996), is intended to produce significantly
fewer mutants while maintaining effectiveness. Laurent
et al. (2017) extended PIT with the SUFFICIENT opera-
tors. There is one exception: the Logical Connector Re-
placement (LCR) operator—which creates mutants by re-
placing logical AND and OR connectors—does not exist in
PIT. The && and || logical connectors in Java do not trans-
late to single bytecode instructions that can be mutated.
Instead, individual conditions translate to branching in-
structions, which are mutated by ROR. The SUFFICIENT
set of mutation operators as implemented in PIT is in Ta-
ble 3.

We define the DELETION set in PIT to be a subset of
operators that approximates the mutation operators pro-
posed by Delamaro et al. (2014), which deleted state-
ments, operators, variables, and constants. Their evalu-
ation showed the subset to be a cost effective selective
mutation approach. Since PIT operates on Java bytecode,
a precise replication of those deletion operators is not prac-
tical. For example, Java bytecode does not explicitly dis-
tinguish between local variable initializations and assign-
ments, with the result being that local variable deletion as
described by Delamaro et al. is not currently implemented
in PIT. Additionally, constants are treated as either literal
values or as local variables, depending on the compile-time
optimizations that are applied, complicating Delamaro et
al.’s constant deletion (CDL) mutation operator. We use
six operators as the DELETION set (listed in Table 3).1

We evaluate each subset of operators for each group of
submissions along two axes: cost and accuracy. Cost was
measured as described in Section 5.4.

To evaluate a subset for accuracy, we measured, for each
operator in the subset, the proportion of mutants that were
detected (i.e., the submission’s mutation coverage for the
given operator). We also measured the submission’s FULL
mutation coverage. With these data in hand, we used
linear regressions of the following form:

• Independent variables: For each operator in the sub-
set, the % of mutants detected

• Dependent variable: Mutation coverage achieved
under the FULL set of operators

• Subjects: Submissions in the given group

Accuracy was therefore measured as the proportion of
variance in FULL coverage explained by coverage of individ-

1We did not use the OBBN mutation operator—variants of which
mutate by deleting bitwise operators and operands—because only
5.7% of submissions in our corpus contained any bit operations.

ual operators in the subset being evaluated, i.e., the regres-
sion model’s adjusted R2. Accuracy is measured against
the FULL set because it is the best available proxy for a
test suite’s defect-detection capability (see Section 6.1).

Using this approach, we measured the cost and accu-
racy for the FULL, SUFFICIENT, and DELETION subsets of
operators, for each group of submissions SG1–SG4.

6.2.2. Result
The SUFFICIENT and DELETION sets are comparable

in terms of their accuracy, and the DELETION set is
much more cost-effective. However, its running
time still presents challenges for larger projects.
Results are summarized in Figure 3. For each submission
group SG1–SG4, the figure depicts the cost in two ways:
mutants / KSLoC (boxplots) and running time (infixed
text). The figure also depicts the accuracy (line charts)
for each subset. We highlight two aspects of this figure.

First, although the DELETION set is slightly weaker than
the FULL and SUFFICIENT sets, it still provides a reliable
assessment of a test suite’s adequacy for most submission
groups. Figure 3 indicates that its adjusted R2 is high,
ranging from 0.84–0.95 across submission groups.

Second, although the DELETION set shows notable cost
savings over the FULL and SUFFICIENT sets, there is still
need for improvement. The precipitous drop in cost from
the FULL set to the DELETION set is visually apparent
in Figure 3 (see the boxplots). That said, offering au-
tomated feedback in an AAT using the DELETION set re-
mains a costly proposition, especially for the more com-
plex projects in submission groups SG3 and SG4. The
DELETION set produces relatively fast mutation results for
submissions in SG1 and SG2, taking a median 4 and 16
seconds per submission, respectively (see the infixed text
in Figure 3). For submissions in SG3 and SG4, the DELE-
TION set took far longer: a running time of approximately
1 minute per submission. This time is far greater than our
target of approximately 30 seconds.

Briefly put, using the DELETION set is considerably
cheaper than using the SUFFICIENT set, which in turn is
considerably cheaper than the FULL set. These sizeable dif-
ferences in cost, coupled with relatively small differences in
accuracy, suggest that the PIT DELETION set is a promis-
ing direction for cost-effective mutation analysis.

This analysis can be seen as a replication study that
gathers more support for previous work evaluating dele-
tion operators. We substantiated findings from Untch
(2009); Deng et al. (2013); Delamaro et al. (2014), and
Derezińska (2016) that reported mutation by deletion to
be highly cost-effective. We also lent some generality to
claims from Shams (2015), who found that statement dele-
tion (SDL) represented a promising path toward the use
of mutation testing for projects produced by novice pro-
grammers.

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

11

FU
LL

S
U
FF
IC
IE
N
T

D
E
LE
TI
O
N

1000

2000

3000

4000

5000

6000

C
os
t

(#
 M

ut
an

ts
 /
K
S
Lo

C
)

16s 9s 8s

SG1

FU
LL

S
U
FF
IC
IE
N
T

D
E
LE
TI
O
N

84s 60s 12s

SG2

FU
LL

S
U
FF
IC
IE
N
T

D
E
LE
TI
O
N

283s 195s 44s

SG3

FU
LL

S
U
FF
IC
IE
N
T

D
E
LE
TI
O
N

325s 225s 53s

SG4

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc
ur
ac
y

(A
dj
. R

2
P
re
di
ct
in
g
FU
LL
 C
ov
.)

Median running
time (seconds)

Cost = # Mutants per KSLoC Accuracy = Adj. R2 Predicting FULL Cov.

Figure 3: Cost and accuracy of the FULL, SUFFICIENT, and DELETION subsets of mutation operators, for each of the submission groups. For
each subplot, the left axis represents cost (# mutants per KSLoC) and the right axis represents accuracy (adjusted R2 in a model predicting
FULL coverage). The y-axes are shared across subplots. Inline text at the bottom of the charts indicates the median running time on our
server.

7. Core study: Proposing new approaches

Although the DELETION set is an improvement over other
selective subsets, we found that it is still too expensive
for larger student projects (Section 6.2). Therefore, we
explore the possibility of reducing its cost further while
maintaining its effectiveness.

We use the DELETION set as a starting point because it
has two desirable properties. First, it is cost-effective. It
already provides a good approximation of FULL mutation
adequacy at a fraction of the cost of FULL mutation as
well as that of other prominent operator subsets in the lit-
erature (Untch, 2009; Delamaro et al., 2014). Shams and
Edwards (2013) found it to be a reliable measure of test ad-
equacy in projects produced by novice programmers, and
we have confirmed this property in our Motivational study
(Section 6).

Second, and critically, DELETION operators tend to
produce a significantly smaller proportion of equivalent
mutants than other selective subsets like the sufficient
sets from Offutt et al. (1996) and Siami Namin et al.
(2008) (Untch, 2009; Delamaro et al., 2014). It is impos-
sible to automatically discard or to avoid creating these
mutants, because determining program equivalence is un-
decidable (Budd and Angluin, 1982). Therefore, creating
a mutation-adequate test suite requires the tester to man-
ually identify and ignore these mutants during testing. At
best, this is unproductive, because this activity does not
help the tester to strengthen their test suite, and may even
reduce their reliance on feedback because the false positiv-
ity rate is too high. At worst, the tester (particularly a stu-
dent) may mis-classify an equivalent mutant as detectable,
and futilely try to devise a test case to do so. Reducing

the incidence of these mutants would greatly increase the
utility of mutation-based feedback to students.

While there do exist non-DELETION operators that pro-
duce few equivalent mutants, DELETION operators are more
attractive since they tend to produce fewer mutants than
other operators. As an example, consider the arith-
metic operator replacement (AOR) mutator, which mu-
tates arithmetic operations by replacing arithmetic oper-
ators in expressions. Empirical measurements from Yao
et al. (2014) suggested that AOR produces few equiv-
alent mutants. However, for a given expression—e.g.,
a + b—AOR would produce four mutants: a - b, a *
b, a / b and a % b. The arithmetic operator deletion
(AOD) mutator, on the other hand, would produce only
two mutants for the same expression: a and b. As we
have seen in the literature (Delamaro et al., 2014) and
in Section 6.2, detecting a DELETION mutant—like those
produced by AOD—often results in detecting other non-
equivalent mutants. So, even though both AOR and AOD
are likely to produce few equivalent mutants, the AOD
mutator is more attractive since it also produces a smaller
total number of mutants. Similar properties are observ-
able for other DELETION operators.

In this section, we investigate whether a subset of the
DELETION set performs comparably well at approximat-
ing mutation adequacy. First, we evaluate the predictive
power added by individual DELETION operators to approx-
imate FULL coverage (Section 7.1). We conduct this step
on the entire corpus of 1389 submissions so as to not over-
fit to individual submission groups. This results in an
ordering in which DELETION operators may be chosen (or
omitted) to produce a cost-effective approximation of FULL

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

12

coverage. We then use this ordering to incrementally eval-
uate subsets of the DELETION set on each submission group
SG1–SG4 (Section 7.2).

7.1. RQ3: Can the cost of mutation by deletion be reduced
further while maintaining effectiveness?

7.1.1. Method
To determine effectiveness, we formulate a new regres-

sion problem similar to the one described in Section 6.2.
Instead of running it on individual submission groups, we
perform this regression on the entire corpus of submissions.

We used a statistical procedure to select a subset of mu-
tation operators out of an initial superset. We fit linear
models in each step using the statsmodels Python pack-
age (Seabold and Perktold, 2010). The goal is to produce
a subset of operators (selective mutation) that incur ac-
ceptable losses in effectiveness.

Forward selection (Bozdogan, 1987) is a statistical fea-
ture selection method. Starting with an empty model (i.e.,
with no features), we consider features one at a time, mea-
suring how much each one improves the model. The best-
performing feature is added and the procedure is repeated
for all remaining features. This process repeats until the
model stops improving, or until there are no more features.

Forward selection is generally used when one wishes to
select a small subset from an initial pool of features. Our
features are individual mutation operators. However, each
feature carries with it some computational cost. There-
fore, forward selection is an appropriate feature selection
strategy since it will (theoretically) help reduce the num-
ber of operators while maintaining overall effectiveness.

We start with no operators, and at each step we add
the operator that minimizes the Bayesian Information Cri-
terion (BIC) (Schwarz, 1978). If two operators perform
equally well when added to the model, we select the one
with lower cost, i.e., the one that produces fewer mu-
tants. BIC was chosen over R2 since it is better at pre-
dicting model performance on future, unseen data. It was
chosen over the closely related Akaike Information Cri-
terion (AIC) because BIC penalizes additional features
more heavily than AIC and might result in a simpler
model (Bozdogan, 1987). This benefits our aim of reducing
the number of mutation operators. The procedure stops
when none of the remaining operators reduce BIC any fur-
ther.

We used the procedure described above to incrementally
choose operators in order of decreasing value added. Since
our goal is to minimize cost, we chose operators from the
cheapest known-good subset of mutation operators, the
DELETION set. At each step, we add the next best op-
erator that further improves the model according to BIC.
This procedure therefore yields a sequence of DELETION op-
erators ordered by the additional value they bring to the
model. Further adjustments may be made to this sequence
based on cost considerations, e.g., by omitting operators
that add little value on top of previously chosen operators.

Note that although forward selection is a greedy ap-
proach, in this case it produced an optimal ordering of
operators. That is, at no point was any single DELETION
operator “incorrectly” chosen over two or more other op-
erators that were cheaper and performed better. This was
confirmed with a brute-force examination of the 26−1 = 63
possible combinations of DELETION operators. As men-
tioned earlier, selecting mutation operators in this way
gives a sequence of operators ordered by the additional
value they bring to a test adequacy measurement. In RQ4,
we use this ordering to build incremental cost-effective sub-
sets of DELETION operators for each submission group (see
Section 7.2).

Siami Namin et al. (2008) also used a feature selection
procedure to select mutation operators in their analysis of
C programs using Proteum. Instead of forward selection,
they used least angle regression (LARS), which is appro-
priate for high-dimensional data, e.g., when the number of
available features is much larger than the number of data
points. Indeed, Namin et al. chose from 108 candidate
Proteum operators using a dataset of 7 representative C
programs. In contrast, in this paper we reduce from 6 can-
didate PIT operators (the DELETION set) using a dataset of
1389 programs, an experimental setup that is well-suited
to forward selection.

7.1.2. Result
A small subset of DELETION operators is respon-

sible for most of the DELETION set’s value, indicat-
ing that its cost can be reduced further. Apply-
ing this process to the entire corpus of 1389 submissions
yielded DELETION operators in the order described in Ta-
ble 4. Highlighted cells indicate cost, accuracy (adjusted
R2), and errors from the final model, and other cells indi-
cate cost and accuracy from intermediate models consid-
ered during forward selection. Notice that all the DELE-
TION operators were included in the final model, suggest-
ing that each of them brings some additional explanatory
power to the model. In other words, in our experiment
none of the DELETION operators is completely subsumed
by a combination of the others.

The DELETION operators were able to explain 92% of the
variance in mutation coverage achieved under the FULL set
(see the highlighted R2 value in Table 4), while doing just
under 20% of the work. This is in keeping with previous
findings that mutation by deletion is highly effective, and
lends further support to our findings in Section 6.2.

Critically, a small subset of DELETION operators is re-
sponsible for most of its effectiveness. Model improve-
ment tended to plateau after the first three operators were
selected. The RemoveConditionals and AOD operators
alone performed reasonably well at predicting coverage un-
der the FULL set (adjusted R2 = 0.88). NonVoidMethod-
Calls was selected next, bringing with it a slight increase
in effectiveness: R2 goes from 0.88 to 0.91. The addition
of subsequent operators resulted in moderate successive
increases in cost, and the model never improved beyond

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

13

Operator Added # Mutants Generated Adj. R2 Coeff. Std.
Error

Median % of
DELETION

% of
FULL

(intercept) — — — — 0.03 0.008
1 RemoveConditionals 102 36.04% 7.04% 0.78 0.35 0.011
2 AOD 140 49.47% 9.67% 0.88 0.19 0.007
3 NonVoidMethodCalls 236 83.39% 16.30% 0.91 0.28 0.012
4 VoidMethodCalls 240 84.81% 16.57% 0.92 -0.04 0.005
5 MemberVariable 271 95.76% 18.72% 0.92 0.06 0.009
6 ConstructorCalls 283 100.00% 19.54% 0.92 0.04 0.007

Table 4: Forward selection on the entire corpus of submissions, choosing DELETION operators. White cells contain cumulative values for
intermediate models, after adding each operator. For example, the AOD operator adds a median 140 − 102 = 38 mutants per submission.
Grey cells contain values from the final model. Though feature selection was done on the basis of BIC, we report adjusted R2 for the sake of
interpretability.

adjusted R2 = 0.92 (rounded). These diminishing returns
suggest that, after a certain point, additional DELETION
operators are not worth the cost they incur.

7.2. RQ4: How do the benefits of different mutation strate-
gies vary by project size?

Recall that the submission dataset is heterogeneous in
size and complexity (Section 5). The models presented
in Table 4 are based on the entire corpus of 1389 submis-
sions. However, it is possible and plausible that different
operator subsets perform better for submissions belong-
ing to different groups, due to differences in the available
opportunities for mutation. For example, submissions in
SG1 overwhelmingly belong to early assignments in the
CS 2 course. They are small and simple codebases that
present comparatively fewer mutation opportunities, even
when normalizing by program size.

Submissions in groups SG2–SG4 were larger not only in
terms of KSLoC, but also in terms of the expected muta-
tion opportunities available per line of code. For example,
SG1 submissions contained an average 20.52 (σ = 18.03)
math operations per KSLoC, while submissions in SG2,
SG3, and SG4 contained between 69.20 (σ = 27.12) and
84.94 (σ = 35.02) math operations per KSLoC. That is,
submissions in SG2–SG4 provided many more opportuni-
ties for the AOD mutation operator to act on each line of
code than did submissions in SG1. Similar per-LoC trends
were observed for other program constructs like the num-
ber of method invocations, variables used, and parenthe-
sized expressions.

It is therefore no surprise that submissions in SG1 pro-
duced signicantly fewer mutants per KSLoC than projects
in SG2–SG4. Submissions in SG1 produced an average
of 2772 (σ = 719) mutants per KSLoC, while submis-
sions in SG2, SG3, and SG4 produced an average of 3896
(σ = 738), 4076 (σ = 1104), and 4443 (σ = 1034) mutants
per KSLoC, respectively. An analysis of variance followed
by post-hoc analysis using Tukey’s HSD test showed that
the pairwise differences in mutants per KSLoC between

groups SG2–SG4 is at least an order of magnitude less
than the difference between SG1 and each of the other
submission groups (p < 0.05 for all pairs).

As an example of how this might affect results, con-
sider that the cyclomatic complexities for submissions to
Projects 1 and 2 are substantially lower than those for
Projects 3–7 (see Table 2). This translates into relatively
fewer mutation opportunities for the RemoveConditionals
operator in the smaller and simpler projects. It would be
reasonable to expect this operator to perform worse on
these projects than on Projects 3–7. Conversely, in the
larger projects, it may mean more “impactful” mutants,
i.e., RemoveConditionals mutants whose detecting tests
would also detect mutants from other operators.

We conjecture that the choice of DELETION operators
may differ based on the actual programs under test.
Therefore, we investigated the differing cost-effectiveness
of operator subsets based on the programs under test.

7.2.1. Method
We incrementally built “n-operator” subsets of DELE-

TION operators for increasing values of n. Operators were
selected one at a time in the order obtained through for-
ward selection (Table 4), and each resulting subset was
evaluated separately against each submission group using
a linear regression of the form described in Section 6.2.

7.2.2. Result
Mutation adequacy on larger projects can be ap-

proximated with fewer mutation operators. Com-
posite results (including subset accuracy, computational
cost, and running time cost) are summarized in Figure 4,
which is a “zoomed in” version of Figure 3. The 1-op, 2-
op, and 3-op subsets have been included, and the FULL and
SUFFICIENT subsets have been removed. We include the
DELETION set to serve as a baseline for cost comparisons.
Accuracy measures are made with respect to the FULL set
(i.e., the strongest known test adequacy criterion for Java

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

14

D
E
LE

TI
O
N

3-
op

2-
op

1-
op

200

400

600

800

1000

C
os
t

(#
 M

ut
an

ts
 /
K
S
Lo
C
)

8s 8s 3s 3s

SG1

D
E
LE

TI
O
N

3-
op

2-
op

1-
op

12s 11s 10s 8s

SG2

D
E
LE

TI
O
N

3-
op

2-
op

1-
op

44s 38s 29s 18s

SG3

D
E
LE

TI
O
N

3-
op

2-
op

1-
op

53s 46s 34s 22s

SG4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

(A
dj
. R

2
P
re
di
ct
in
g
FU

LL
 C
ov
.)

Median running
time (seconds)

Cost = # Mutants per KSLoC Accuracy = Adj. R2 Predicting FULL Cov.

Figure 4: The cost and accuracy of our proposed incremental subsets of operators. For each subplot, the left axis represents cost (# mutants
per KSLoC) and the right axis represents accuracy (Pearson’s r w.r.t. FULL coverage). Y-axes are shared across subplots. Inline text at the
bottom of the charts indicates the median running time on our server.

programs). Figure 4 includes the incremental subsets (the
1-op and 2-op subsets) proposed in Table 3.

• 1-op Subset. The first subset comprises only the
RemoveConditionals operator, which removes condi-
tionals by replacing them with boolean literals (true
or false).
The 1-op Subset shows poor performance for SG1, the
group of small submissions, explaining a meager 47%
of variance in FULL coverage (see the right most point
in the first subplot in Figure 4). For the groups in the
middle, SG2 and SG3, RemoveConditionals is able to
explain 88% and 86% of the variance in FULL coverage,
respectively. It is able to explain 90% of the variance
in FULL coverage for group SG4 (the group containing
the largest submissions).

• 2-op Subset. This subset contains the 1-op Subset
plus the AOD operator, which eliminates arithmetic
operators from statements by removing operands.
This subset does better at predicting FULL coverage
for all submission groups, with a natural increase in
cost. The two operators—RemoveConditionals and
AOD—are able to explain over 92% of the variance in
FULL coverage for SG2–SG4. The subset still performs
relatively poorly for SG1, with adjusted R2 = 0.80.

• 3-op Subset. This subset contains the 2-op Sub-
set plus the NonVoidMethodCalls operator, which re-
moves calls to non-void methods by replacing their
return values with the given type’s default value.
The inclusion of NonVoidMethodCalls results in negli-
gible improvements in model performance for all sub-
mission groups. The model continues to perform well

for groups SG2–SG4 (adjusted R2 > 0.94), and it con-
tinues to perform poorly for group SG1 (adjusted R2

= 0.84). Note that adding the NonVoidMethodCalls
operator nearly doubles the costs incurred by the pre-
vious subset for each submission group.

• 6-op Subset. For the sake of brevity, we jump to
results for the entire available set of DELETION oper-
ators, i.e., containing all 6 deletion operators listed
in Table 3. With the entire DELETION set included,
models are able to explain a high amount of vari-
ance in FULL coverage (94% or higher) for submission
groups SG2–SG4.
For group SG1, the model is only able to explain 85%
of the variance in FULL coverage. For all groups, this
represents a small improvement from the 3-op subset.

In addition to examining the number of mutants pro-
duced by each incremental subset, we also estimated their
running times on our system, using the scheme described
in Section 5.4. Normalizing by program size, we obtain a
composite measure of running time cost for a given subset
of operators, in seconds per KSLoC, facilitating compar-
isons across submission groups. The FULL and DELETION
sets took an estimated median of 206 and 35 seconds per
KSLoC, respectively. The 3-op subset offered little im-
provement over the DELETION set (median = 36 seconds
per KSLoC). Improvements were more pronounced for the
2-op and 1-op subsets, with respective estimated running
times of 24 and 18 seconds per KSLoC. It is evident that
the estimated running time impact of the larger subsets of
operators (including the DELETION and even the FULL set)
are feasible for smaller projects (SG1), but not for larger
projects (SG2–SG4).

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

15

8. Validation study

Our goal in Sections 6 and 7 was to develop a scalable
approach to provide students with rapid mutation-based
feedback on the quality of their test suites. Our findings
suggested that only one or two DELETION operators can ap-
proximate the mutation coverage that would be achieved
under the FULL set of operators. However, due to their
scale and context, the studies suffer from threats to in-
ternal and external validity. We conducted an additional
study to validate our findings by addressing the two most
critical threats: 1) results that may be over-fitted to our
educational context, and 2) the presence of equivalent mu-
tants in our analysis. Discussion of the remaining and (we
believe) less critical threats is deferred to Section 10.

We evaluated the cost-effectiveness of our chosen mu-
tation operators using a dataset published by Kintis
et al. (2016),2 used in their comparison of various mu-
tation testing tools for Java. The dataset comprises
codebases, mutation-adequate test suites, and manually
marked equivalent mutants for 12 methods in 6 Java
projects. According to Kintis, 10 methods were randomly
chosen from 4 real-world projects (Commons-Math, Com-
mons, Pamvotis, and XStream). The projects ranged from
5,505 LoC to 17,294 LoC, and the chosen methods ranged
from 18 to 55 LoC. They chose two more methods (Bi-
sect and Triangle), which are 23 and 39 LoC long, from an
oft-cited software testing textbook (Ammann and Offutt,
2008). The methods and mutants they spawned are listed
in Table 5.

Analyzing this dataset helped us to address two threats
to the validity of our previous studies.

External validity. Threat: Though our corpus com-
prised 1389 programs of varying sizes and complexities,
our findings may not generalize beyond the educational
context, or even beyond our particular educational con-
text. Mitigation: The validation dataset contains sev-
eral real-world libraries and frameworks that are built for
a range of purposes (i.e., String manipulation, network
management, mathematics and statistics, and XML pars-
ing) and used by thousands of users (according to Maven
and SourceForge; see Table 5). If our Core results hold
under analysis of this dataset, there is a better case for
generalizability.

Internal validity. Threat: We did not exclude equiv-
alent mutants from our Motivational and Core studies.
The problem of automatically identifying these mutants is
undecidable (Budd and Angluin, 1982), but can be done
by manually inspecting programs. This was infeasible in
our study due to the size of the corpus (nprojects = 1389,
nmutants ≈ 2.5M), and would be impossible to operational-
ize in an automated assessment context. Mitigation:
In the validation dataset, Kintis et al. have manually
marked equivalent mutants, allowing us to exclude them

2http://pages.cs.aueb.gr/~kintism/papers/scam2016/. Accessed:
April 25, 2020.

from the analysis. If our chosen operator subsets from the
Core study prove to be cost-effective using the validation
dataset, our findings may be said to be free of this threat.
Throughout this section, we measure the costs of operator
subsets as their relative cost savings over the FULL set.

8.1. RQ5: How do our proposed mutation strategies per-
form in terms of cost-effectiveness against a separate
validation dataset?

Having proposed and evaluated the cost and reliabil-
ity for the DELETION set and incremental subsets on our
submissions corpus, we seek to validate our findings along
the same axes on a second dataset. In this section, we
measure the DELETION, 3-op, 2-op, and 1-op operator sub-
sets in terms of their computational cost and reliability.
We interpret results in terms of the trade-off between cost
savings and effectiveness as compared to the FULL set.

Here is the context for the validation study. Mutation
analysis was run on the codebases studied by Kintis et al.,
using the FULL set of PIT operators described in Study 1
(see Section 6.1). This produced a dataset of 3037 mu-
tants generated by 17 mutation operators. Of these, 355
(11.69%) were equivalent mutants. Note that the total
number of mutants produced is higher than the number of
PIT mutants reported by Kintis et al.: this is because
PIT’s available mutation operators have been extended
since 2016, also by Kintis et al. (2018). We computed full
mutation matrices for each project—for each detectable
mutant, we obtained all of its detecting tests. In other
words, for each test, we obtained the list of mutants it
detected.

Some additional work was needed to prepare the dataset
for analysis. As mentioned in Section 5.2, we used an im-
proved version of PIT, whose augmented set of mutation
operators offers the strongest measurement of test ade-
quacy currently available for Java programs (Kintis et al.,
2018). As a result, this version of PIT produced more mu-
tants than those published by Kintis et al. (2016), which
resulted in there being previously unmarked equivalent
mutants. These cases were few because Kintis et al. pro-
vided equivalent mutants from µJava and MAJOR in ad-
dition to (an older version of) PIT. So the only mutants
that needed further checking were those that 1) were not
produced by any of the three tools compared by Kintis et
al. and 2) were not detected by the provided mutation-
adequate test suites. Additionally, it was necessary to add
two assertions to the Pamvotis test suite to detect two
undetected mutants. These mutants affected only the pri-
vate global state in the class under test (i.e., the value of an
instance variable), but not the method’s outcome (either
with a single or repeated calls). However, they could affect
calls to other methods, and therefore cannot be considered
equivalent. Detecting these mutants involved: 1) modify-
ing a private field to be publicly accessible, and 2) adding
one assertion each to two existing test cases to check the
value of the field. The addition of these assertions did not
affect the impact of the modified tests other than to detect

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

16

Usage Project Method Subset

FULL DELETION 3-op 2-op 1-op

% Eq. # % Eq. # % Eq. # % Eq. # % Eq.

— Bisect sqrt 212 10% 24 4% 23 4% 22 5% 6 17%

— Triangle classify 463 9% — — — — 52 4% 34 0%

1.7K XStream decodeName 305 17% 54 28% 52 27% 34 32% 24 38%

1.6K Commons-Math gcd 367 19% — — 42 10% 40 10% 22 9%

orthogonal 370 3% 56 0% 52 0% 48 0% 10 0%

4.4K* Pamvotis addNode 424 13% 52 8% 46 9% 44 9% 6 0%

removeNode 108 11% 13 0% 10 0% 8 0% 6 0%

16.3K Commons-Lang lastIndexOf 132 8% — — 19 5% 18 6% 16 6%

subarray 93 10% 15 0% 14 0% 10 0% 8 0%

toMap 96 18% 19 11% 16 13% 12 17% 10 0%

capitalize 137 18% 25 4% 24 4% — — 14 7%

wrap 330 11% 52 6% 51 6% 32 9% 16 0%

Total 3037 12% 424 8% 401 8% 334 9% 172 8%

Table 5: Projects tested in the validation study, and the number of mutants and equivalent mutants produced by the FULL, DELETION, and
incremental subsets of mutation operators. Projects are sorted by Usage: for the real-world projects, reports the number of Maven artifacts
that depend on them (*since Pamvotis is not on Maven, we report the # downloads on SourceForge) as of May 6, 2020.

the targeted mutants. These were the only code changes
made to the dataset.

Table 5 describes the subjects and the mutants they
spawned under different operator subsets. Missing val-
ues indicate that the subject did not produce any new
DELETION mutants in the current incremental subset. For
example, the Triangle#classify subject only produced
DELETION mutants belonging to the AOD and Remove-
Conditionals operators; we do not report numbers for sub-
sequent incremental subsets (3-op subset and the DELE-
TION set), since they would contain no additional mutants.

8.2. Method
We evaluated the cost and reliability3 of the DELETION

set and the incremental subsets proposed in Section 7. We
had the following experimental design:

• Independent variables: Mutation operator sub-
sets: the DELETION, 3-op, 2-op, and 1-op subsets

• Dependent variables: Cost and reliability of the
subsets being evaluated

• Subjects: 12 methods from 6 Java projects

We measured each subset’s computational cost as the
number of mutants it would produce, as a proportion of the

3Note the change in terminology from “accuracy” to “reliability”.
Instead of statistically predicting FULL mutation adequacy, we con-
cretely measure how far toward it we get when we satisfy a given
operator subset.

number that would have been produced by the FULL set.
This relative cost measures allow comparisons of cost sav-
ings across subject programs, which are of different sizes.

Evaluating a subset’s reliability entails measuring its
strength as a test adequacy criterion. In other words, if a
tester were to stop testing after satisfying the given sub-
set of mutation operators, how good would their tests be?
Analysis was carried out on each project as follows:

1. We generated a complete set of mutants M using the
FULL set of operators, and discarded all equivalent
mutants that were identified by Kintis et al. and our-
selves.

2. We produced a matrix of detectable mutants and de-
tecting tests by testing each mutant in M using a
mutation-adequate test suite T (provided by Kintis
et al.).

3. For each operator subset S being evaluated, we con-
structed a subset-adequate test suite TS ⊆ T and
measured its mutation coverage, i.e., the proportion
of mutants in M that were detected by TS . This mea-
surement is the subset’s reliability.
We did this by choosing the smallest subset of tests
that detected all mutants generated by S. The detect-
ing tests were chosen from the mutation matrix. Note
that there can exist multiple such smallest test sets,
and results are dependent on the order in which tests
are selected and the power of individual tests. Follow-
ing Delamaro et al. (2014), we shuffled the available

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

17

test set to minimize order-related bias, and we re-
peated the test selection process 3 times per project
to minimize power-related bias, selecting the test set
with the median mutation coverage.

4. The mutation coverage of subset S was measured as
the percentage of mutants in M (the complete set of
mutants) that were detected by the subset-adequate
test suite TS .

DELETION 3-op 2-op 1-op
Subset

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ut

at
io

n
Sc

or
e

Figure 5: Mutation coverage: Proportion of FULL mutants detected
by the subset-adequate test suite.

8.3. Result

Subset performance is in agreement with the re-
sults obtained in the Core study (Section 7). Re-
sults are summarized in Figures 5 and 6, as distributions
across subjects. Figure 5 depicts the mutation coverages
for each subset. That is, for each subset S, it shows the
proportion of FULL mutants that were detected by the
subset-adequate test suite TS . For example, the DELE-
TION-adequate test suite detected a median 96% of mu-
tants from the FULL set of operators. The 2-op and 1-op
subsets are nearly as effective at achieving mutation cover-
age as the DELETION set, detecting a median 95% and 89%
of mutants, respectively. The 3-op subset brings little to
no improvement over the previous subset, i.e., it appears
that the NonVoidMethodCalls operator brings little addi-
tional value over the RemoveConditionals and AOD oper-
ators. This is in agreement with observations from RQ4
(Section 7.2).

In addition to the mutation coverage, we consider the
computational cost of the subsets under study, i.e., the
number of mutants that will be produced and tested. Fig-
ure 6 depicts the number of mutants produced by each
subset as a proportion of the number that would have been
produced by the FULL set. We observe cost decreases in
the expected order, with subsets having the following me-
dian costs: DELETION (15%) > 3-op (14%) > 2-op (11%) >
1-op (6%). We can see that the 3-op subset brings little

DELETION 3-op 2-op 1-op
Subset

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

%
 o
f F

UL
L
M
ut
an

t C
ou

nt

Figure 6: Computational cost: Number of mutants produced by each
subset, expressed as a proportion of the FULL number of mutants.

cost reduction over the DELETION set, while the 2-op sub-
set and 1-op subset bring better cost savings over their re-
spective preceding incremental subsets. These results are
in keeping with observations from sections 6 and 7. Ob-
serve that proportions are close to those seen in Table 4
(see the column titled “% of FULL”).

Finally, we measured the proportion of all equivalent
mutants that were produced by the DELETION set and each
incremental subset. Percentages for individual subjects
can be seen in Table 5. The DELETION set produced a
median of 6% of all equivalent mutants (i.e., it avoided
producing 94% of the equivalent mutants that would oth-
erwise have been produced). This is in keeping with pre-
vious findings (Untch, 2009; Delamaro et al., 2014). This
performance can only improve when we eliminate opera-
tors from the DELETION set. The 3-op and 2-op subsets also
produced a median of 6% of all equivalent mutants. The
1-op subset was most impressive in this regard, producing
a median 0 equivalent mutants. We can see in Table 5 that
the 1-op subset produced 0 equivalent mutants for 7 out
of 12 projects. The reduced propensity of the DELETION
set and its incremental subsets for producing equivalent
mutants bodes well for its potential utility as a feedback
mechanism for student-written software tests.

9. Discussion

We discuss the implications of our findings.

9.1. Choosing a Subset of Operators
What subset of DELETION operators is the most cost-

effective in general? We have seen that the DELETION set,
though cheaper than the FULL and SUFFICIENT sets (Fig-
ure 3), still includes a component of unproductive cost.
The DELETION operators’ ability to approximate FULL cov-
erage improves and then tapers off after an appropriate
subset of mutation operators has been chosen. Based on
the changing R2 values in Table 4, one might conclude
that the critical point is after the second (AOD) or third

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

18

(NonVoidMethodCalls) operator is added to the model.
However, including NonVoidMethodCalls increases the to-
tal cost of the previous two operators by nearly 50%, but
only explains an additional 3% of the variance, which is
a relatively small improvement over the previous subset.
We believe that this large additional cost is not worth the
value added to the model. Selective mutation with Non-
VoidMethodCalls takes a median 38s and 46s for SG3 and
SG4, respectively. These running times are far beyond our
target time of 30 seconds as specified in Section 3. These
diminishing returns were also observed in the Validation
study.

Figure 4 is a “zoomed in and panned right” version
of Figure 3, with the FULL and SUFFICIENT sets excluded,
and the 1-op and 2-op subsets included. For submissions
in SG2–SG4, subsets of the DELETION set are able to bring
huge cost savings with small losses in accuracy. Similar re-
sults were seen in the Validation study—in Figures 5 and 6,
we see that the 2-op subset achieved a median mutation
coverage of 95%, while consistently producing under 15%
of the total number of mutants. Inclusion of the NonVoid-
MethodCalls operator substantially increases the cost with
no improvements in effectiveness. Taking cost and effec-
tiveness into account, we conclude: In the educational
context, the 2-operator subset is the most practical
set for fast and effective mutation analysis.

Why does RemoveConditionals perform so effectively by
itself? We found that RemoveConditionals alone was ef-
fective at approximating FULL coverage for the groups of
larger submissions SG2–SG4 (Section 7.2). This opera-
tor replaces conditionals with Boolean literals, effectively
excluding (or ensuring the execution of) all statements
guarded by a condition. Mutation analysis using this oper-
ator has strong ties to object branch coverage (OBC), one
of the strongest forms of code coverage for Java programs.
OBC requires students to write tests that exercise every
Boolean condition generated in their solution’s compiled
bytecode. RemoveConditionals can be seen as a stronger
form of this measure, since it is sensitive not only to the
execution of conditions, but also to the propagation of pro-
gram state or output from those conditions to the tests.

This finding may be clearer in light of the kinds of pro-
grams we investigated. Our corpus included submissions
from an upper-level Data Structures & Algorithms (CS3)
course, nearly all of which were clustered in submission
groups SG2–SG4. These projects require significant con-
trol flow components to implement complex behaviors, so
it is plausible that the conditions in the control flow logic
would be the most critical aspects of quality testing. Sim-
ilarly, in the Validation study, RemoveConditionals was a
highly effective lone operator, achieving a median muta-
tion coverage of 89% (Figure 5). That the operator tends
to produce few equivalent mutants (median = 0) only
serves to increase its attractiveness as an option for selec-
tive mutation. We recommend: AATs should use the
1-op subset for larger and more complex projects
(SLoC > 666).

1 public int probeSquare(int i) {
2 return i * i;
3 // Tests did not check the use of this arithmetic
4 // expression.
5 }

Listing 1: A snippet highlighting a line that contained a
surviving mutant (similar to reports emitted by PIT).

How does one evaluate tests for smaller submissions
(group SG1)? In Section 7.2, notice that the 3-op subset—
or indeed, the entire DELETION set—is unable to achieve
a good approximation of coverage under the FULL set for
smaller submissions. This throws into question whether se-
lective mutation is an effective approach for these projects.
The time to run mutation analysis on these submissions is
so low (µ = 22.2 seconds, σ = 16.8 seconds) that a cheaper
approximation of the FULL set is unnecessary. In light of
these differences in the effectiveness and cost of mutation
testing on our data set, we report: AATs may use the
FULL set of mutation operators for small and simple
submissions (SLoC ≤ 341).

However, it is worth considering whether mutation
testing is an over-engineered test evaluation strategy for
smaller programs of such minimal complexity. The large
number of mutants produced could potentially overwhelm
beginning CS students. Where possible, instructors might
opt for all-pairs methods, or they could curate a set of
faulty implementations for students to detect with their
tests (Politz et al., 2014; Wrenn and Krishnamurthi, 2019).

9.2. Operationalizing Feedback
What might feedback based on mutation analysis look

like? Ultimately, the goal of our research is to improve the
quality of student-written test suites. Mutation analysis
only furthers this goal if the students get feedback about
the process in some way. Similar to code coverage, it is
easy to generate feedback for students by highlighting the
lines of code that contain undetected mutations. Consider
the code snippet in Listing 1. The AOD mutation operator
was applied to the highlighted line (line 2), changing it to
return i. The highlight indicates that all tests passed
even with the specified mutation in place. In other words,
no test behaves differently whether the output is i or i *
i. A combination of information—the highlighted line and
the exact mutation that was applied—gives the student an
explicit strategy for improving the test suite based on the
provided feedback, i.e., write a test that makes an assertion
about the function’s return value. Similar feedback may
be devised for other mutation operators.

In addition to the empirically validated benefits of
DELETION mutation—namely, its cost-effectiveness and re-
duced propensity for producing equivalent mutants—we
believe that DELETION mutation offers a third potential
benefit over existing mutation approaches: simplicity of
feedback. When a student is faced with an undetected

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

19

DELETION mutant, there are two possibilities: the deleted
code is unchecked, or it is redundant. For other mutation
operators, the situation is more complex. An undetected
mutant may mean that the test suite has failed to cover
a subtle, potentially obscure, possibly unreachable edge
case (e.g., see Yao et al.’s (2014) work on equivalent and
“stubborn” mutants). Constructing a test case to detect
an undetected mutant could require knowledge about the
specific mutation operator used, which further implies a
basic understanding of mutation analysis. DELETION mu-
tation avoids this added complexity by producing fewer
mutants, which are more obvious and more likely to be
actionable.

How does this compare with condition coverage? Offutt
and Voas showed that condition coverage is subsumed by
mutation coverage, i.e., if a test set satisfies mutation cov-
erage, it also satisfies condition coverage. Condition cover-
age requires that all conditions—including individual con-
ditions that are joined with conjunctions or disjunctions
to form compound decisions—be made to evaluate to true
or false at least once (Myers et al., 2011). This criterion
is subsumed by the RemoveConditionals mutation opera-
tor. That is, detecting all RemoveConditionals operators
means that all conditions must have been executed at least
once by the test suite.

Condition coverage is satisfied when when students ex-
ecute the code, regardless of whether or not they check
that the behavior is correct. In stark contrast, mutation
testing requires the test suite to recognize that the mutant
has failed to be detected by the test suite. Specific to our
corpus of submissions, consider Listing 1 again. It depicts
a function from a project in our corpus that achieved com-
plete condition coverage but zero mutation coverage. It is
a simple probing function that helps determine a record’s
position in a hash table. The student’s tests only veri-
fied that records existed in the hash table after insertion,
but never that records were inserted at the right posi-
tions. Code coverage measures were unable to detect this
deficiency, since the probeSquare function was executed
(“covered”) during the insertion process.

Indeed, this discrepancy was reflected in submissions
across our entire corpus. Condition coverage scores tended
to cluster close to the 100% mark (µ = 0.98, σ = 0.03). No-
tice that students almost universally had good condition
coverage scores. This may be because they were graded in
part on their coverage scores. In contrast, mutation cover-
age using only the 2-op Subset (RemoveConditionals and
AOD) tended to be far lower (µ = 0.81, σ = 0.18). These
outcomes are worse than they seem, since in our experi-
ence condition coverage of at least 80% is fairly trivial to
reach (sometimes through pathological or bad-faith tests).

9.3. Future directions
This paper sets the stage for educators to offer stu-

dents incremental feedback based on mutation analysis.
As our particular goal, we reduced the cost of the analysis
such that it can produce reliable feedback for students’

test suites in under 30 seconds on typical institutional
AAT hardware. But our approach covers contexts beyond
this experimental setting. The subsets of DELETION opera-
tors evaluated in Section 7 provide incrementally cheaper
approaches with which to provide mutation-based incre-
mental feedback. These approaches can be selectively ap-
plied to a diverse set of contexts, governed by institutional
needs, budgets, or other factors.

In addition to its cost and effectiveness, it is important
to evaluate the educational value of mutation analysis. In
particular, how useful is mutation analysis to undergrad-
uate CS students? How does the type or number of muta-
tion operators affect students’ ability to react to feedback?
What level of programming expertise do students need to
benefit from mutation-based feedback? As a preliminary
step toward this effort, we held 9 interviews with third-
year undergraduate CS students, who indicated that they
found feedback based on mutation analysis to be useful
and actionable. They were able to construct specific test
cases that would detect mutants generated from their own
code. Further work is needed to determine the degree to
which mutation feedback is useful to CS students and the
best way in which to present feedback.

10. Threats to Validity

10.1. Internal validity
Running time distributions may have been affected by

differences in the proportion of timed-out mutants between
submission groups. In particular, the increase in median
running times over SG1, SG2, and SG3 (8s, 12s, and 44s,
respectively) were more pronounced than the increase in
running times from SG3 to SG4 (44s to 53s). Further in-
vestigation revealed that submissions in SG3 (specifically,
those submitted to Project 5 in the CS 3 corpus) contained
an atypically high percentage of mutants that timed out.
This drove up the median running time for mutation anal-
ysis for the submission group. We could not identify a sys-
tematic cause. However, we do not believe this to be a se-
rious threat to the overall validity of our findings; we used
two cost measures for corroboration (mutant count, run-
ning time) as recommended by Guizzo et al. (2020), and
our choice and ordering of operators are not affected by
the higher-than-expected median running time for SG3.

10.2. External validity
As with any research on software, our results are only as

general as the students and programs we study. We have
striven to mitigate this threat, by studying 1) a corpus
of 1389 programs of various sizes and complexities, imple-
menting 7 requirement specifications, and 2) a smaller cor-
pus of randomly chosen codebases from real-world projects
and the mutation testing literature. That our findings
from both datasets are largely in agreement suggests that
these results may be free of this particular threat. That
said, for reasons described in Section 5, we studied only

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

20

Java programs. It is possible that our findings do not
generalize to other programming languages or mutation
tools. For example, in Java bytecode, characters (char)
are represented as integers, while in other languages (like
Python), they are not. As a result, for similar operations
in the two languages (e.g., assigning a character to a vari-
able), different mutation operators would be used.

10.3. Construct validity
We studied PIT, a mature mutation testing tool avail-

able for Java. As described in Section 5, it is currently the
most robust, easy-to-use, and practical mutation testing
tool for the JVM, making it the most practical choice for
fast feedback based on mutation analysis. Nevertheless,
we do not use any direct measures of test adequacy here,
such as defect-detection capability. Instead, we use cover-
age on the FULL set of PIT operators as a proxy for mea-
suring test quality, relying on existing theoretical (DeMillo
et al., 1978; Offutt and Voas, 1996) and empirical (Offutt,
1992; Andrews et al., 2005; Just et al., 2011) results on
the validity and strength of mutation analysis. We are en-
couraged by the fact that Shams performed an assessment
of deletion mutators in terms of measuring test suite bug
detection ability and found them to be more effective than
code coverage measures, but these results still depend on
the validity of the relationship between mutation analysis
and test quality.

11. Conclusion

The pedagogy of software testing is hindered by
widespread reliance on weak test adequacy criteria for the
purposes of assessment and feedback. Mutation analy-
sis has been proposed as an alternative solution, but its
computational cost is a significant limiting factor. We
have devised a cost-effective mutation strategy to produce
fast, accurate, and incremental feedback on the quality
of student-written software tests. This approach provides
a better assessment of how well software tests check ex-
pected behaviors, and can be used to generate feedback
for students. We improved upon the most efficient muta-
tion operator set previously proposed in the literature, the
DELETION set. For the projects we studied, the Remove-
Conditionals and AOD operators produced results compa-
rable to the most stringent set of operators at 1/10th the
cost of comprehensive mutation, and less than half the
cost of deletion mutation. These cost savings will enable
the use of mutation analysis in the automated assessment
tools frequently used in computer science courses. Future
work will evaluate the efficacy of mutation analysis as a
feedback mechanism in the classroom.

12. Acknowledgments

We are grateful to the National Science Foundation
for their support under grants DUE-1625425 and DLR-

1740765. We thank the anonymous peer reviewers whose
feedback improved this paper.

References

Aaltonen, K., Ihantola, P., Seppälä, O., 2010. Mutation analy-
sis vs. code coverage in automated assessment of students’ test-
ing skills, in: Proceedings of the ACM International Conference
Companion on Object Oriented Programming Systems Languages
and Applications Companion, ACM, New York, NY, USA. pp.
153–160. URL: http://doi.acm.org/10.1145/1869542.1869567,
doi:10.1145/1869542.1869567.

Ammann, P., Offutt, J., 2008. Introduction to Software Testing. 1
ed., Cambridge University Press, USA.

Andrews, J.H., Briand, L.C., Labiche, Y., 2005. Is mu-
tation an appropriate tool for testing experiments?, in:
Proceedings of the 27th International Conference on Soft-
ware Engineering, ACM, New York, NY, USA. pp. 402–
411. URL: http://doi.acm.org/10.1145/1062455.1062530,
doi:10.1145/1062455.1062530.

Aniche, M., Hermans, F., van Deursen, A., 2019. Prag-
matic software testing education, in: Proceedings of
the 50th ACM Technical Symposium on Computer Sci-
ence Education, ACM, New York, NY, USA. pp. 414–
420. URL: http://doi.acm.org/10.1145/3287324.3287461,
doi:10.1145/3287324.3287461.

Azevedo, R., Bernard, R.M., 1995. A Meta-Analysis of the
Effects of Feedback in Computer-Based Instruction. Jour-
nal of Educational Computing Research 13, 111–127. URL:
http://journals.sagepub.com/doi/10.2190/9LMD-3U28-3A0G-FTQT,
doi:10.2190/9LMD-3U28-3A0G-FTQT.

Black, P., Wiliam, D., 1998. Assessment and classroom learn-
ing. Assessment in Education: Principles, Policy & Practice
5, 7–74. URL: https://doi.org/10.1080/0969595980050102,
doi:10.1080/0969595980050102.

Bozdogan, H., 1987. Model selection and akaike’s information crite-
rion (aic): The general theory and its analytical extensions. Psy-
chometrika 52, 345–370.

Budd, T.A., Angluin, D., 1982. Two notions of cor-
rectness and their relation to testing. Acta Informat-
ica 18, 31–45. URL: https://doi.org/10.1007/BF00625279,
doi:10.1007/BF00625279.

Buffardi, K., Valdivia, P., Rogers, D., 2019. Measuring unit test
accuracy, in: Proceedings of the 50th ACM Technical Symposium
on Computer Science Education, ACM, New York, NY, USA. pp.
578–584. URL: http://doi.acm.org/10.1145/3287324.3287351,
doi:10.1145/3287324.3287351.

Carver, J.C., Kraft, N.A., 2011. Evaluating the testing ability
of senior-level computer science students, in: 2011 24th IEEE-
CS Conference on Software Engineering Education and Training
(CSEE T), pp. 169–178. doi:10.1109/CSEET.2011.5876084.

Coles, H., Laurent, T., Henard, C., Papadakis, M., Ventresque, A.,
2016. Pit: A practical mutation testing tool for java (demo),
in: Proceedings of the 25th International Symposium on Soft-
ware Testing and Analysis, ACM, New York, NY, USA. pp.
449–452. URL: http://doi.acm.org/10.1145/2931037.2948707,
doi:10.1145/2931037.2948707.

Delahaye, M., du Bousquet, L., 2013. A comparison of mutation
analysis tools for java, in: 2013 13th International Conference on
Quality Software, IEEE. pp. 187–195. doi:10.1109/QSIC.2013.47.

Delamaro, M.E., Offutt, J., Ammann, P., 2014. Designing deletion
mutation operators, in: 2014 IEEE Seventh International Confer-
ence on Software Testing, Verification and Validation, IEEE. pp.
11–20. doi:10.1109/ICST.2014.12.

DeMillo, R.A., Guindi, D.S., McCracken, W.M., Offutt, A.J., King,
K.N., 1988. An extended overview of the mothra software test-
ing environment, in: [1988] Proceedings. Second Workshop on
Software Testing, Verification, and Analysis, IEEE. pp. 142–151.
doi:10.1109/WST.1988.5369.

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

21

DeMillo, R.A., Lipton, R.J., Sayward, F.G., 1978. Hints on test
data selection: Help for the practicing programmer. Computer
11, 34–41. doi:10.1109/C-M.1978.218136.

Deng, L., Offutt, J., Li, N., 2013. Empirical evaluation of the state-
ment deletion mutation operator, in: 2013 IEEE Sixth Interna-
tional Conference on Software Testing, Verification and Valida-
tion, IEEE. pp. 84–93. doi:10.1109/ICST.2013.20.

Derezińska, A., 2016. Evaluation of deletion mutation opera-
tors in mutation testing of c# programs, in: Zamojski, W.,
Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (Eds.),
Dependability Engineering and Complex Systems, Springer Inter-
national Publishing, Cham. pp. 97–108.

Edwards, S.H., 2004. Using software testing to move stu-
dents from trial-and-error to reflection-in-action. SIGCSE Bull.
36, 26–30. URL: https://doi.org/10.1145/1028174.971312,
doi:10.1145/1028174.971312.

Edwards, S.H., Shams, Z., 2014. Comparing test quality
measures for assessing student-written tests, in: Compan-
ion Proceedings of the 36th International Conference on Soft-
ware Engineering, ACM, New York, NY, USA. pp. 354–
363. URL: http://doi.acm.org/10.1145/2591062.2591164,
doi:10.1145/2591062.2591164.

Edwards, S.H., Shams, Z., Cogswell, M., Senkbeil, R.C.,
2012. Running students’ software tests against each oth-
ers’ code: New life for an old ”gimmick”, in: Pro-
ceedings of the 43rd ACM Technical Symposium on Com-
puter Science Education, ACM, New York, NY, USA. pp.
221–226. URL: http://doi.acm.org/10.1145/2157136.2157202,
doi:10.1145/2157136.2157202.

Edwards, S.H., Snyder, J., Pérez-Quiñones, M.A., Allevato, A.,
Kim, D., Tretola, B., 2009. Comparing Effective and In-
effective Behaviors of Student Programmers, in: Proceedings
of the Fifth International Workshop on Computing Educa-
tion Research Workshop, ACM, New York, NY, USA. pp.
3–14. URL: http://doi.acm.org/10.1145/1584322.1584325,
doi:10.1145/1584322.1584325.

Goldwasser, M.H., 2002. A gimmick to integrate soft-
ware testing throughout the curriculum, in: Proceed-
ings of the 33rd SIGCSE Technical Symposium on Com-
puter Science Education, ACM, New York, NY, USA. pp.
271–275. URL: http://doi.acm.org/10.1145/563340.563446,
doi:10.1145/563340.563446.

Goodenough, J.B., Gerhart, S.L., 1975. Toward a theory of test
data selection. IEEE Transactions on Software Engineering SE-1,
156–173. doi:10.1109/TSE.1975.6312836.

Gopinath, R., Ahmed, I., Alipour, M.A., Jensen, C.,
Groce, A., 2017. Does choice of mutation tool mat-
ter? Software Quality Journal 25, 871–920. URL:
http://link.springer.com/10.1007/s11219-016-9317-7,
doi:10.1007/s11219-016-9317-7.

Guizzo, G., Sarro, F., Harman, M., 2020. Cost measures matter
for mutation testing study validity, in: Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineer-
ing, Association for Computing Machinery, New York, NY, USA.
p. 1127–1139. URL: https://doi.org/10.1145/3368089.3409742,
doi:10.1145/3368089.3409742.

Inozemtseva, L., Holmes, R., 2014. Coverage is not
strongly correlated with test suite effectiveness, in: Pro-
ceedings of the 36th International Conference on Soft-
ware Engineering, ACM, New York, NY, USA. pp. 435–
445. URL: http://doi.acm.org/10.1145/2568225.2568271,
doi:10.1145/2568225.2568271.

Ivanković, M., Petrović, G., Just, R., Fraser, G., 2019.
Code coverage at google, in: Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Soft-
ware Engineering, ACM, New York, NY, USA. pp. 955–
963. URL: http://doi.acm.org/10.1145/3338906.3340459,
doi:10.1145/3338906.3340459.

Jackson, D., Usher, M., 1997. Grading student pro-
grams using assyst, in: Proceedings of the Twenty-
eighth SIGCSE Technical Symposium on Computer Sci-
ence Education, ACM, New York, NY, USA. pp. 335–
339. URL: http://doi.acm.org/10.1145/268084.268210,
doi:10.1145/268084.268210.

Jenks, G., 1977. Optimal data classification for choropleth maps
occasional paper no 2. University of Kansas, Department of Ge-
ography .

Jenks, G.F., 1967. The data model concept in statistical mapping.
International yearbook of cartography 7, 186–190.

Jia, Y., Harman, M., 2011. An analysis and survey of the develop-
ment of mutation testing. IEEE Transactions on Software Engi-
neering 37, 649–678. doi:10.1109/TSE.2010.62.

Jones, E.L., 2000. Software testing in the computer science
curriculum – a holistic approach, in: Proceedings of the Aus-
tralasian conference on Computing education - ACSE ’00,
ACM Press, New York, New York, USA. pp. 153–157. URL:
http://portal.acm.org/citation.cfm?doid=359369.359392,
doi:10.1145/359369.359392.

Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes,
R., Fraser, G., 2014. Are mutants a valid substitute
for real faults in software testing?, in: Proceedings of the
22Nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, ACM, New York, NY, USA. pp.
654–665. URL: http://doi.acm.org/10.1145/2635868.2635929,
doi:10.1145/2635868.2635929.

Just, R., Schweiggert, F., Kapfhammer, G.M., 2011. Major: An
efficient and extensible tool for mutation analysis in a java
compiler, in: 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), pp. 612–615.
doi:10.1109/ASE.2011.6100138.

Kazerouni, A.M., Edwards, S.H., Shaffer, C.A., 2017. Quanti-
fying incremental development practices and their relationship
to procrastination, in: Proceedings of the 2017 ACM Con-
ference on International Computing Education Research, As-
sociation for Computing Machinery, New York, NY, USA.
p. 191–199. URL: https://doi.org/10.1145/3105726.3106180,
doi:10.1145/3105726.3106180.

Kazerouni, A.M., Shaffer, C.A., Edwards, S.H., Servant, F.,
2019. Assessing incremental testing practices and their im-
pact on project outcomes, in: Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, As-
sociation for Computing Machinery, New York, NY, USA.
p. 407–413. URL: https://doi.org/10.1145/3287324.3287366,
doi:10.1145/3287324.3287366.

King, K.N., Offutt, A.J., 1991. A fortran language system
for mutation-based software testing. Softw. Pract. Exper. 21,
685–718. URL: http://dx.doi.org/10.1002/spe.4380210704,
doi:10.1002/spe.4380210704.

Kintis, M., Papadakis, M., Papadopoulos, A., Valvis, E., Malevris,
N., 2016. Analysing and comparing the effectiveness of mutation
testing tools: A manual study, in: 2016 IEEE 16th International
Working Conference on Source Code Analysis and Manipulation
(SCAM), pp. 147–156. doi:10.1109/SCAM.2016.28.

Kintis, M., Papadakis, M., Papadopoulos, A., Valvis, E., Malevris,
N., Le Traon, Y., 2018. How effective are mutation testing tools?
an empirical analysis of java mutation testing tools with man-
ual analysis and real faults. Empirical Software Engineering 23,
2426–2463. URL: https://doi.org/10.1007/s10664-017-9582-5,
doi:10.1007/s10664-017-9582-5.

der Kleij, F.M.V., Feskens, R.C.W., Eggen, T.J.H.M.,
2015. Effects of feedback in a computer-based learn-
ing environment on students’ learning outcomes: A
meta-analysis. Review of Educational Research 85, 475–
511. URL: https://doi.org/10.3102/0034654314564881,
doi:10.3102/0034654314564881.

Laurent, T., Papadakis, M., Kintis, M., Henard, C., Traon, Y.L.,
Ventresque, A., 2017. in: 2017 IEEE International Conference
on Software Testing, Verification and Validation (ICST), pp. 430–
435. doi:10.1109/ICST.2017.47.

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

22

Lethbridge, T.C., 2000. Priorities for the educa-
tion and training of software engineers. Jour-
nal of Systems and Software 53, 53 – 71. URL:
http://www.sciencedirect.com/science/article/pii/S0164121200000091,
doi:https://doi.org/10.1016/S0164-1212(00)00009-1.

Lloyd, S., 1982. Least squares quantization in pcm.
IEEE Transactions on Information Theory 28, 129–137.
doi:10.1109/TIT.1982.1056489.

Ma, Y.S., Offutt, J., Kwon, Y.R., 2005. Mujava: an automated class
mutation system. Software Testing, Verification and Reliability
15, 97–133. doi:10.1002/stvr.308.

Mathur, A.P., 1991. Performance, effectiveness, and reliability is-
sues in software testing, in: [1991] Proceedings The Fifteenth An-
nual International Computer Software Applications Conference,
pp. 604–605. doi:10.1109/CMPSAC.1991.170248.

Myers, G.J., Sandler, C., Badgett, T., 2011. The art of software
testing. John Wiley & Sons.

Offutt, A.J., 1992. Investigations of the software test-
ing coupling effect. ACM Trans. Softw. Eng. Methodol.
1, 5–20. URL: https://doi.org/10.1145/125489.125473,
doi:10.1145/125489.125473.

Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf,
C., 1996. An experimental determination of sufficient mu-
tant operators. ACM Trans. Softw. Eng. Methodol. 5,
99–118. URL: http://doi.acm.org/10.1145/227607.227610,
doi:10.1145/227607.227610.

Offutt, A.J., Voas, J.M., 1996. Subsumption of condition coverage
techniques by mutation testing. Department of Information and
Software Systems Engineering, George Mason University, Tech.
Rep. ISSE-TR-96-100 .

Papancea, A., Spacco, J., Hovemeyer, D., 2013. An open platform
for managing short programming exercises, in: Proceedings of
the Ninth Annual International ACM Conference on International
Computing Education Research, ACM, New York, NY, USA. pp.
47–52. URL: http://doi.acm.org/10.1145/2493394.2493401,
doi:10.1145/2493394.2493401.

Pettit, R., Homer, J., Gee, R., Mengel, S., Starbuck, A.,
2015. An empirical study of iterative improvement in pro-
gramming assignments, in: Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, As-
sociation for Computing Machinery, New York, NY, USA.
p. 410–415. URL: https://doi.org/10.1145/2676723.2677279,
doi:10.1145/2676723.2677279.

Pettit, R., Prather, J., 2017. Automated assess-
ment tools: Too many cooks, not enough collabo-
ration. J. Comput. Sci. Coll. 32, 113–121. URL:
http://dl.acm.org/citation.cfm?id=3055338.3079060.

Politz, J.G., Krishnamurthi, S., Fisler, K., 2014. In-flow
peer-review of tests in test-first programming, in: Pro-
ceedings of the Tenth Annual Conference on Interna-
tional Computing Education Research, Association for
Computing Machinery, New York, NY, USA. p. 11–
18. URL: https://doi.org/10.1145/2632320.2632347,
doi:10.1145/2632320.2632347.

Radermacher, A., Walia, G., 2013. Gaps between industry ex-
pectations and the abilities of graduates, in: Proceeding of the
44th ACM Technical Symposium on Computer Science Educa-
tion, Association for Computing Machinery, New York, NY, USA.
p. 525–530. URL: https://doi.org/10.1145/2445196.2445351,
doi:10.1145/2445196.2445351.

Schuler, D., Zeller, A., 2009. Javalanche: Efficient muta-
tion testing for java, in: Proceedings of the 7th Joint
Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ACM, New York, NY, USA. pp.
297–298. URL: http://doi.acm.org/10.1145/1595696.1595750,
doi:10.1145/1595696.1595750.

Schwarz, G., 1978. Estimating the dimen-
sion of a model. Ann. Statist. 6, 461–464.
URL: https://doi.org/10.1214/aos/1176344136,
doi:10.1214/aos/1176344136.

Seabold, S., Perktold, J., 2010. Statsmodels: Econometric and statis-
tical modeling with python, in: 9th Python in Science Conference.

Shams, Z., 2015. Automated Assessment of Student-written Tests
Based on Defect-detection Capability. Ph.D. thesis. Blacksburg,
VA. URL: http://hdl.handle.net/10919/52024.

Shams, Z., Edwards, S.H., 2013. Toward practical muta-
tion analysis for evaluating the quality of student-written
software tests, in: Proceedings of the Ninth Annual Inter-
national ACM Conference on International Computing Ed-
ucation Research, ACM, New York, NY, USA. pp. 53–
58. URL: http://doi.acm.org/10.1145/2493394.2493402,
doi:10.1145/2493394.2493402.

Siami Namin, A., Andrews, J.H., Murdoch, D.J., 2008. Suffi-
cient mutation operators for measuring test effectiveness, in:
Proceedings of the 30th International Conference on Soft-
ware Engineering, ACM, New York, NY, USA. pp. 351–
360. URL: http://doi.acm.org/10.1145/1368088.1368136,
doi:10.1145/1368088.1368136.

Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth,
J.K., Padua-Perez, N., 2006. Experiences with marmoset: De-
signing and using an advanced submission and testing sys-
tem for programming courses, in: Proceedings of the 11th
Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education, ACM, New York, NY, USA. pp.
13–17. URL: http://doi.acm.org/10.1145/1140124.1140131,
doi:10.1145/1140124.1140131.

Spacco, J., Pugh, W., 2006. Helping students appreciate test-
driven development (tdd), in: Companion to the 21st ACM
SIGPLAN Symposium on Object-oriented Programming Systems,
Languages, and Applications, ACM, New York, NY, USA. pp.
907–913. doi:10.1145/1176617.1176743.

Untch, R.H., 2009. On reduced neighborhood mutation analysis us-
ing a single mutagenic operator, in: Proceedings of the 47th An-
nual Southeast Regional Conference, ACM, New York, NY, USA.
pp. 71:1–71:4. doi:10.1145/1566445.1566540.

Wang, T., Su, X., Ma, P., Wang, Y., Wang, K., 2011.
Ability-training-oriented automated assessment in introduc-
tory programming course. Comput. Educ. 56, 220–226.
URL: http://dx.doi.org/10.1016/j.compedu.2010.08.003,
doi:10.1016/j.compedu.2010.08.003.

Wong, W.E., Mathur, A.P., 1995. Fault detection effectiveness of
mutation and data flow testing. Software Quality Journal 4,
69–83. URL: http://link.springer.com/10.1007/BF00404650,
doi:10.1007/BF00404650.

Wrenn, J., Krishnamurthi, S., 2019. Executable examples
for programming problem comprehension, in: Proceedings of
the 2019 ACM Conference on International Computing Ed-
ucation Research, ACM, New York, NY, USA. pp. 131–
139. URL: http://doi.acm.org/10.1145/3291279.3339416,
doi:10.1145/3291279.3339416.

Wrenn, J., Krishnamurthi, S., Fisler, K., 2018. Who
tests the testers?, in: Proceedings of the 2018 ACM
Conference on International Computing Education
Research, ACM, New York, NY, USA. pp. 51–59.
URL: http://doi.acm.org/10.1145/3230977.3230999,
doi:10.1145/3230977.3230999.

Yao, X., Harman, M., Jia, Y., 2014. A study of equiv-
alent and stubborn mutation operators using human
analysis of equivalence, in: Proceedings of the 36th In-
ternational Conference on Software Engineering - ICSE
2014, ACM Press, Hyderabad, India. pp. 919–930. URL:
http://dl.acm.org/citation.cfm?doid=2568225.2568265,
doi:10.1145/2568225.2568265.

Published version available at: https://doi.org/10.1016/j.jss.2021.110905
©2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

