
Which Builds Are Really Safe to Skip? Maximizing Failure Observation for Build
Selection in Continuous Integration

Xianhao Jina,∗, Francisco Servantb,a,1,∗

aDepartment of Computer Science, Virginia Tech, Virginia, United States of America
bDepartamento de Teoría de la Señal y las Comunicaciones y Sistemas Telemáticos y Computación, Universidad Rey Juan

Carlos, Madrid, Spain

Abstract

Continuous integration (CI) is a widely used practice in modern software engineering. Unfortunately, it is also an
expensive practice. Google and Mozilla estimate their expenses for their CI systems in millions of dollars. To reduce
the cost of CI, researchers developed multiple approaches to reduce its computational workload requirements. However,
these approaches sometimes make mispredictions and skip failing builds which are not desirable to be skipped. Thus,
in this paper, we aim to save computational cost in CI, while also maximizing the observation of failing builds, i.e., to
skip builds more safely. First, we perform empirical studies to understand which builds are safe to skip, starting from
CI-Skip rules [1] that characterize builds that developers decide to skip. We observe that CI-Skip rules are not so safe
as expected. We then develop a collection of CI-Run rules that can complement these rules. Based on our findings,
we propose PreciseBuildSkip, a novel approach that maximizes build failure observation and reduces the cost of CI
through the strategy of build selection. We evaluate our approach and results show that our approach saved more cost
(5.5%) than the safest existing technique but reduced the falsely skipped failing builds from 4.1% to 0% (median value).

Keywords: continuous integration, build prediction, safety, maintenance cost

1. Introduction

Continuous integration (CI) is a popular practice in
modern software engineering that encourages developers
to build and test their software in frequent intervals [2].
For simplicity and consistency with previous studies [3], we
refer as build to the full process of building the software
and running all the tests when CI is triggered.

While CI is widely recognized as a valuable practice, it
is also high-cost. The cost of CI is characterized in past
work as the computational workload that it requires —
to regularly execute software builds [4, 5, 6, 7, 8]. This
is the definition of the cost of CI that we use in this pa-
per. Adopting CI can be very expensive — i.e., executing
its high computational workload can often require a high
Budget: Google estimates the cost of running its CI sys-
tem in millions of dollars [4], and Mozilla estimates theirs
as $201,000 per month [9]. For smaller-budget companies
that have not yet adopted CI, this high cost can pose a
strong barrier.

Some existing research approaches aim to save cost in CI
— i.e., to reduce its computational workload requirements.
Most past works follow the premise that observing failing

∗Corresponding authors.
Email addresses: xianhao8@vt.edu (Xianhao Jin),

francisco.servant@urjc.es (Francisco Servant)
1Some work performed while at Virginia Tech.

executions (builds or tests) is more valuable to develop-
ers than observing passing ones — since failures present
actionable feedback. So, they automatically predict and
skip executions that would likely pass — to save the cost
of executing them. Most of these techniques use heuristics
or machine-learning algorithms for their predictions.

A popular approach to this goal in previous works is to
automatically predict and skip passing test cases. Past ap-
proaches were proposed to skip, e.g., tests that historically
failed less [8, 10], that have a long distance with the code
changes [11], that test unchanged modules [12], or that
are predicted to pass by a machine learning classifier [13].
Techniques to skip the execution of passing tests — to re-
duce the cost of testing — were proposed even before CI
was a popular practice. These are known as regression test
selection (RTS) techniques e.g., [14, 15, 16, 17, 18, 19, 20].

Another, more recent, approach is to predict and skip
passing builds, e.g., [3]. This approach has the poten-
tial for higher cost savings — when a build is skipped,
it saves the cost of running all its tests as well as its
build-preparation steps. Finally, other past approaches
predict and skip builds that developers would have manu-
ally skipped [21, 1]. When asked about the characteristics
of the builds that they skip, developers for the most part
describe builds that will likely pass, i.e., they skip builds
with: non-source code changes, with no test coverage, with
trivial source code changes, or with other likely-to-pass
characteristics, e.g., refactoring changes [1].

Preprint submitted to Journal of Systems and Software March 15, 2022

2

Unfortunately, since these techniques make predictions,
they may also make mistakes, resulting in either: missed
opportunities to save cost (not-skipped passing execu-
tions), or missed observations of failures (skipped failing
executions). We aim to minimize the latter kind of mis-
takes — i.e., to maximize failure observation, and we
specifically target build selection techniques. Build se-
lection techniques carry a trade-off: as they skip more
builds, they save more cost, but they are also more likely
to skip builds that would have failed. We believe that
many practitioners may prefer a build selection technique
that maximizes its safety (i.e., failure observation ratio)
— even if it may save less cost than other approaches. We
aim to help those practitioners in this paper.

We perform two empirical studies to better understand
which builds are safe to skip. Recent work studied the
characteristics of builds that developers manually de-
cided to skip, and encoded them into rules [1]. We will
refer to these as CI-Skip rules. While it would be in-
tuitive to assume that developers decide to skip builds
that are guaranteed to pass, the actual safety of these
seemingly-safe CI-Skip rules is yet unknown. First, we
study the benefit (i.e., how much cost (number of builds)
can be saved) and safety (i.e., how many failures can be
observed) of CI-Skip rules. Next, we study why CI-Skip
rules sometimes capture failing builds, and develop a set
of CI-Run rules to complement them, increasing their
safety.

Additionally, we encode the findings of our empirical
studies in an automated build-selection technique,
PreciseBuildSkip (PBS), to predict the outcome of
builds as safely — i.e., to correctly predict as many build
failures — as possible. PreciseBuildSkip uses a random-
forest classifier for prediction, with CI-Skip rules and CI-
Run rules as features. We also evaluated PreciseBuild-
Skip’s performance in different scenarios and compared it
with existing build selection approaches.

We performed multiple observations in our studies.
First, we observed that no CI-Skip rule is completely
safe — all CI-Skip rules captured some builds that ended
up failing. Generally, as CI-Skip rules provided higher po-
tential cost savings, they also skipped more failing builds.
Therefore, CI-Skip rules cannot be used as-is to safely skip
builds. Developers that manually used CI-Skip rules to
skip builds would miss the observation of some build fail-
ures (generally, more so for CI-Skip rules that save more
cost).

Second, we identified four main CI-Run rules why
builds under CI-Skip rules may fail: (1) changes in build
scripts, (2) in configuration files, (3) subsequent failures,
and (4) increasing platform numbers. We observed that
at least one of these CI-Run rules tends to be present
when builds fail under CI-Skip rules. In particular, the
subsequent-failure CI-Run rule was correlated with build
failures for all CI-Skip rules. That is, the most common
reason why builds under CI-Skip rules failed is that they
were subsequent to another build failure, e.g., a build that

does not change source-code files may still fail if the pre-
vious one failed (i.e., it was already broken and these
changes did not fix it).

Third, our proposed safe approach to build selection,
PreciseBuildSkip, provided both higher cost sav-
ing and failure observation rates than the state of
the art build-selection techniques: Abd19 [1], Abd20 [21],
and Jin20 [3].

We designed PreciseBuildSkip with customizable
tendency to predict builds to pass. A higher tendency to
predict builds to pass will achieve a higher ratio of skipped
builds — and thus higher cost savings, but it may also re-
sult in higher rates of mistakenly skipped failing builds.
In our experiments, to compare with the results of exist-
ing build-selection techniques, we highlighted four values
of PreciseBuildSkip’s prediction tendency: PBS_Safe,
PBS_Moderate, PBS_Relaxed, and PBS_More_Relaxed
(from lower to higher tendency to predict passing builds).

When customized (PBS_Relaxed) to save as much
effort as the highest-effort-saving previous technique
(Abd19 saved 22.3% build executions), PBS_Relaxed
provided higher safety (PBS_Relaxed observed 87.61%
failures compared to 80.7% by Abd19). When cus-
tomized (PBS_Moderate) to provide as much safety as
the safest existing technique (Abd20 observed 96% build
failures), PBS_Moderate provided higher cost savings
(PBS_Moderate saved 12.9% failures compared to 5.2%
by Abd20). When customized (PBS_Safe) for highest
safety, PBS_Safe observed 100% build failures, while still
saving 5.5% of build executions.

Finally, our new approach outperformed existing build
selection approaches when comparing all variants’ abilities
of predicting build failures with the corresponding build
selection approach. We also found that the performance
of PreciseBuildSkip is not impacted by the previously
self-impacted train data set. Besides, the executing time
of PreciseBuildSkip is negligible compared to its saved
duration. We then performed an additional analysis to un-
derstand the extent to which our CI-Run rules benefitted
PreciseBuildSkip’s effectiveness. We observed that the
variants of PreciseBuildSkip that applied CI-Run rules
as features provided higher effectiveness than the corre-
sponding variants without them.

This paper provides the following contributions:

• The first empirical study to understand the cost-
saving ability (the ratio of builds that they can skip)
and safety (the ratio of failing builds that they can
observe) of CI-Skip rules.

• A collection of CI-Run rules, that explain why CI-Skip
rules sometimes characterize builds that will fail, and
that complement them to make them safer.

• A customizable, automated approach
(PreciseBuildSkip) that saves cost in CI by
automatically predicting and skipping builds that are

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

3

likely to pass, and that is safer and saves more cost
than the state-of-the-art build-selection techniques.

• A novel evaluation metric for build-selection tech-
niques (SFRD), that provides a balanced measure-
ment of the Cost Saving and Observed Failures met-
rics.

• An evaluation of the overhead of PreciseBuildSkip
by comparing its build time saved with its required
execution time.

• A study of the impact of CI-Run rules on the effec-
tiveness of PreciseBuildSkip

• An evaluation of the practicality of PreciseBuild-
Skip in terms of how its effectiveness is impacted
when it is trained on projects that already apply build
selection.

We also include a replication package for our paper [22].

2. Related Work

2.1. Characterizing Builds
To the extent of our knowledge, only Abdalkareem et al.

[1] aimed to characterize CI-Skip builds. They proposed a
human study to understand reasons why developers decide
to skip builds. Then they designed a rule-based technique
based on CI-Skip rules from those reasons and evaluated
the cost-saving ability of their approach. In contrast, we
included more CI-Skip rules in this paper and evaluated
both the cost-saving ability and safety for each single rule.
We then explored CI-Run rules to complement CI-Skip
rules and encoded our findings into a new approach that
can better discriminate passing and failing builds.

Other studies investigated the reasons for build failures.
Some studies [23, 24] sort common build failures into com-
pilation [25], unit test, static analysis [26], and server er-
rors. Paixão et al. [27] studied the interplay between non-
functional requirements and failing builds. Other studies
found factors that contribute to build failures: architec-
tural dependencies [28, 29] and other more specific factors,
such as the stakeholder role, the type of work item and
build [30], or the programming language [31]. Other less
obvious factors that could cause build failures are build
environment changes or flaky tests [32]. Some work [32][3]
also found that build failures tend to occur consecutively,
which Gallaba et al. [33] describe as “persistent build
breaks”.

Other studies found change characteristics that corre-
late with failing builds, such as: code churn [32, 34], build
tool [34], and statistics on the last build and the history
of the committer [35]. Hassan et al. [36] found that build
scripts (BuildScripts) can result in build failures and pro-
posed an approach to fix this kind of failing build auto-
matically. Our approach explored CI-Run rules that can
invalid CI-Skip rules including BuildScripts and use them

for build predictions. Jin and Servant [3] differentiated
first and subsequent failures and developed a predictor for
first failures. Others [37, 35] studied to predict the build
outcomes based on these findings. In contrast, Precise-
BuildSkip focuses on detecting builds that can be safely
skipped in CI and maximizing the observed failing builds
while providing some cost-savings.

2.2. Empirical Studies of CI and its Cost
There are multiple works focusing on understanding the

practice of CI, in dimensions of both practitioners e.g., [4]
and software repositories [38]. Stahl et al. [39] and Hilton
et al. [4] studied the benefits and costs of CI usage, and
the trade-offs between them [5]. Lepannen et al. simi-
larly studied the costs and benefits of continuous delivery
[40]. Zhao et al. tried to understand the impact of CI
in other development practices, like bug-fixing and testing
[41]. Vasilescu et al. studied CI as a tool in social coding
[42], and later studied its impact on software quality and
productivity [38]. Felidré et al. [43] studied the adherence
of projects to the original CI rules [2]. Other recent studies
focused on the barriers of CI adoption [6] and pain points
[7] of CI. Many empirical studies highlighted The high cost
of running builds and delaying failing builds observation as
an important problem in CI [4, 5, 6, 7, 8] — which reaches
millions of dollars in large companies, e.g., at Google [4]
and Microsoft [8]. They also highlighted the long waiting
duration as the main pain point in those companies [44].

2.3. Approaches to Reduce the Cost of CI
A popular effort to reduce the cost of CI focuses

on understanding what causes long build durations e.g.,
[45, 46]. Thus, most of the approaches skip tests within
builds, e.g., tests that historically failed less [8, 10], that
have a long distance with the code changes [11], that
test unchanged modules [12], or that are predicted to
pass by a machine learning classifier [13]. These tech-
niques are based on regression test selection (RTS) e.g.,
[14, 15, 16, 17, 18, 19, 20]. While these techniques focus on
making every build cheaper, our work addresses the cost
of CI differently: by reducing the total number of builds
that get executed. A related recent technique saves cost
in CI by running fewer builds [1, 21, 3]. Another recent
study compared the benefits of test selection and build
selection techniques [47, 48]. Our technique uses a more
comprehensive set of CI-Skip rules and adds CI-Run rules
as supplement which provides better safety. Our work
also aims at solving the main concern of adopting build
selection approaches — skipping failing builds.

A related effort for improving CI aims at prioritizing its
tasks to provide early fault observation. The most com-
mon approach in this direction is to apply test case prior-
itization (TCP) techniques e.g., [49, 50, 10, 51, 52, 53] so
that builds fail faster. Another similar approach achieves
faster feedback by prioritizing builds instead of tests [54]
when there is a queue of builds waiting for executed under

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

4

limited computation source. In contrast, our work aims at
cost-saving in CI by skipping unfruitful tasks, i.e., only ex-
ecuting a subset of tasks. Prioritization-based techniques
advance feedback but are not able to save cost, i.e., all
builds and tests still get executed. Finally, other existing
efforts to reduce cost in CI make individual builds cheaper,
by running less computation in them e.g., [55][56].

3. Research Questions

Our goal is to help practitioners skip builds to save cost
(i.e., skip passing builds) more safely (i.e., skipping fewer
failing builds) than with existing approaches. For that, we
perform two empirical studies and three experiments.

First, we empirically study the cost-saving potential and
safety of CI-Skip rules, i.e., rules that past work observed
developers using to skip builds in practice [1]. Second, we
propose a collection of CI-Run rules to capture why CI-
Skip rules sometimes include builds that fail, and to make
them safer — i.e., capture fewer failing builds.

While the findings of these two studies are useful by
themselves to educate practitioners about how to better
identify builds that are safe to skip — i.e., that will likely
pass, we also create a novel technique to automatically
make that decision for them: PreciseBuildSkip. We
perform three experiments to evaluate PreciseBuild-
Skip. First, we evaluate PreciseBuildSkip compared
to the state of the art build-selection techniques. This
experiment evaluates techniques both in terms of the cor-
rectness of their predictions and in terms of the cost-saving
ability and safety that they provide. It also measures the
overhead introduced by PreciseBuildSkip to build du-
ration — to understand how the cost of running Precise-
BuildSkip impacts its provided cost savings. Second, we
perform an additional study to understand the impact of
considering CI-Run rules in PreciseBuildSkip’s predic-
tions. Finally, we study how the predictions of Precise-
BuildSkip would be impacted in the scenario where it
has been used for some time, and thus its training data
has been affected by build selection.

In our studies and experiments, we answer the following
research questions:

Empirical Study 1: Evaluating CI-Skip rules
RQ1: How much cost can each CI-Skip rule save?
RQ2: How safe is each CI-Skip rule?

Empirical Study 2: Supplementing CI-Skip rules
with CI-Run rules

RQ3: What proportion of failing builds under CI-Skip
rules are covered by our CI-Run rules?

RQ4: How helpful are CI-Run rules at discriminating be-
tween failing and passing builds under CI-Skip rules?

Experiment 1: Evaluating PreciseBuildSkip
RQ5: How correct are PreciseBuildSkip’s predictions?
RQ6: How much cost-saving and safety do Precise-

BuildSkip’s predictions provide?

RQ7: How much overhead does PreciseBuildSkip add
to build duration?

Experiment 2: Understanding the Impact of CI-
Run rules

RQ8: What is the impact of including CI-Run rules as
features in PreciseBuildSkip?

Experiment 3: Evaluating PreciseBuildSkip when
trained on Builds affected by Build-selection

RQ9: How much cost-saving and safety does Precise-
BuildSkip provide when trained on projects that
used build selection?

3.1. Data Set
We performed our study over the Travis Torrent dataset

[31], which includes 1,359 projects (402 Java projects and
898 Ruby projects) with data for 2,640,825 build instances
including changes on all different files such as source files
or configuration files. We remove “toy projects” from the
data set by studying those that are more than one year
old, and that have at least 200 builds and at least 1000
lines of source code, which is a criteria applied in multiple
other works [35, 34]. To be able to explore CI-Skip rules
on test information, we also filter out those projects whose
build logs do not contain any test information. We focused
our study on builds with passing or failing outcome, rather
than error or canceled. Besides, in Travis a single push or
pull-request can trigger a build with multiple jobs, and
each job corresponds to a configuration of the building
step. As many existing papers have done [33, 57, 58], we
considered these jobs as a single build since they share the
same build result and duration. After this filtering process,
we obtained 82,427 builds from 100 projects (13,464 failing
builds).

To be able to implement our approach and replicate
the state of the art build-selection techniques (Abd19 [1],
Abd20 [21], and Jin20 [3]), we extended the information in
TravisTorrent of these 100 projects in multiple ways. First
of all, we implemented scripts to download the raw build
logs from Travis and parse them to extract all of the infor-
mation about test executions, such as test name, duration
and outcome. Replicating Abd19 [1] and Abd20 [21] re-
quired additional information that TravisTorrent does not
provide for builds, such as the content of commit mes-
sages, changed source lines and changed file names. For
that, we also mined additional information about commits
in the projects’ code repositories through Github such as
changed file names and changed line content by running
scripts to read the content of commits using Github’s API.
Finally, we built a dependency graph for the source code
of each project using a static code analysis tool (Scitool
Understand [59]) to compute the paths between files for
implementing CI-Skip rules. For Java projects, we ran Sc-
itool Understand on the command line to scan them. Un-
derstand generates a .CSV file with the static dependency
graph of the project. For Ruby projects, we obtained their

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

5

static dependency graph using rubrowser [60]. We used
a project’s static dependency graph to check if there is a
path between changed files and test files.

4. Empirical Study 1: Evaluating CI-Skip rules

The goal of this study is to understand the impact that
developers would observe when applying CI-Skip rules to
decide which builds to skip manually. Existing work [1]
recommends to skip builds if any of the CI-Skip rules is
met. When applying such CI-Skip rules, developers can
obtain cost savings, but they may also mistakenly skip
failing builds. Ideally, CI-Skip rules would also be highly
safe — they would cause developers to mistakenly skip few
failing builds.

We evaluated CI-Skip rules in two dimensions: cost-
saving ability and safety, over a large dataset of continu-
ous integration builds (see §3.1). The former reflects how
much cost-saving can be achieved by applying each rule,
while the latter shows how safe it is to skip builds based
on these rules. The results of this study will be useful for
developers who are already using CI-Skip rules to manu-
ally skip builds, to understand the risk of skipping failing
builds that they are incurring, depending on what CI-Skip
rules they are applying. They will also inform developers
to plan to use CI-Skip rules to skip builds, and want to
know which rules save the most cost and incur the lowest
risk of skipping passing builds. Next, we describe CI-Skip
rules and how we studied our research questions in this
study.

4.1. Studied Factors: CI-Skip rules

To the extent of our knowledge, no previous work stud-
ied which builds are fully safe to skip, i.e., are guaranteed
to pass. The work with the closest goal was Abdalka-
reem et al.’s [1], who captured the characteristics of builds
that developers decided to skip. We refer to these rules
as CI-Skip rules. Our goal in this empirical study is to
understand to what extent these CI-Skip rules are actually
safe to skip or not, i.e., whether they capture only builds
that pass.

We study all the rules from Abdalkareem et al.’s work,
and we created two additional novel CI-Skip rules as ad-
ditional rules that would intuitively signal that a build is
likely to pass: AllPassingTest and NoReachableTest. We
list our studied CI-Skip rules in Table 1, along with a brief
description.

SourceCommentChange (SCC): Developers some-
times skip builds whose commits only modify comments
in source code. We implement this rule using regular ex-
pressions to determine whether each modified source line is
a comment change. One could think of this rule as a sim-
ple way to capture builds that cannot fail. However, one
example of changes in comments that could cause build
failures is that of changes in JavaDoc comments, which

this rule skips [1]. For example, errors in the Javadoc syn-
tax, the usage of deprecated features in it, or an incorrect
Java version may still cause a build failure.

SourceFormatModification (SFM): Developers
sometimes choose to skip builds whose commits only
modify the format of source code. Abdalkareem et al. re-
port this CI-Skip rule as “Formatting source code without
changing the semantic of the code” [1]. We created the
SourceFormatModification rule to capture changes that
only change the format of the code.

SourceFormatCommentChange (SCC_SFM):
Abdalkareem et al.’s implementation of the SourceFor-
matModification CI-Skip rule is slightly different from
how it was described [1]. So, we give their implemented
version of SFM a new rule name (SCC_SFM), and we
study it separately. SCC_SFM first applies SourceCom-
mentChange (SCC) removing comment lines, it removes
all white spaces and new line symbols that are ignored by
programming language grammars, and then it checks if
the remaining lines modified by the change are the same,
i.e., if the change only modifies the code format. Changes
fall under this rule whether they change only comments
(SourceCommentChange) or they change only comments
and format (SourceFormatCommentChange).

NonSrcFileChange (NSF): Sometimes developers
decide to skip builds with changes that only touch non-
source code files, e.g., “.git” files. Abdalkareem et al. orig-
inally defined non-source code files as those with a file
extension in a pre-defined list2. A build falls under this
rule if it only changed files with extensions in that list.

MetaFileChangeOnly (MFC): Developers also
sometimes skip builds with changes only on meta files.
We identified meta files2 (e.g., ”.ignore” or ”.git” file) by
looking at the extensions of the files modified in the build.
We used the same process and extensions as Abdalkareem
et al.’s study [1].

VersionRelease (VR): Developers sometimes skip a
release preparation commit. Following Abdalkareem et
al.’s study [1], we analyzed the changed files in a build’s
commits and check if it only modified the version in build
scripts, e.g., Maven or Gradle.

AllPassingTest (APT): We created this additional
CI-Skip rule. It reflects a criterion by which a build that
is safe to skip (i.e., that will not fail) is one in which all
its tests pass. We implement it by flagging builds in which
none of their tests failed, as stated in its raw build logs.
We realize that this rule is not useful for prediction —
since the outcome of tests is unknown before a build is
executed. However, we decided to add it to this study to
empirically understand the safety of this seemingly-strong
criterion for anticipating safe builds.

NoReachableTest (NRT): We also created this ad-
ditional CI-Skip rule, since we believe it could be another

2A complete list of the file extensions can be found here:
http://das.encs.concordia.ca/publications/which-commits-can-be-
ci-skipped/

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

6

Table 1: Studied CI-Skip rules that can be used to skip CI builds.

CI-Skip rule Short Description
SourceCommentChange The commits of this build only change comments in source code.

SourceFormatModification The commits of this build only change the format of source code.
SourceFormatCommentChange The build’s commits only change both the source code comments (optional)

and format.
NonSrcFileChange The build’s commits change no source file.

MetaFileChangeOnly The build’s commits only change meta-file.
VersionRelease The build only includes release preparation commits.
AllPassingTests The build has no failing test.

NoReachableTest The build has no test for changed files.

strong criterion for anticipating safe builds. Additionally,
developers report skipping builds “When tests are not writ-
ten to work for that particular source branch/repo” [1].
NoReachableTest flags builds whose tests have no path to
the changed files — i.e., the changes in this build are not
covered by the tests. We use the static dependency graph
to check the existence of the path between the test and the
changed files, i.e., if any of the tests are reachable to the
changed files in this build. We propose NoReachableTest
as a proxy for AllPassingTest that can be used for predict-
ing safe builds — i.e., it can be calculated before builds
are executed.

4.2. RQ1: How much cost can each CI-Skip rule save?

To answer this research question, we measured the pro-
portion of builds under each CI-Skip rule, among all the
builds in each studied project. We show the distribution
of such proportions in Figure 1. For example, if 30%
of all builds have only non_source file changes (NonSr-
cFileChange), it means that developers can save 30% of
build effort by skipping builds under this rule.

4.2.1. Result
Figure 1 shows the cost-saving ability of each CI-Skip

rule. We can find that the performance of CI-Skip
rules on cost-saving differs from each other. Some CI-
skip rules can provide high cost-saving, but others are
much less effective. Five of eight rules (SourceCom-
mentChange, SourceFormatModification, SourceFormat-
CommentChange, MetaFileChangeOnly and VersionRe-
lease) cover a very small proportion of builds (median less
than 5%) which shows that they have a low prevalence in
all builds. Developers may achieve very low cost-saving by
applying these rules. In contrast, AllPassingTest provides
really high cost savings (median 95.7%). This means that
AllPassingTest represents a majority of passing builds, i.e.,
those that had no failing tests. While AllPassingTest is not
usable in practice to predict build outcomes, this shows us
that AllPassingTest is a very promising feature to try to
approximate through other features that can be used for
prediction, i.e., that can be computed pre-build-execution,
such as NoReachableTest. Finally, we also observed that

CI-Skip rules

So
ur
ce
Co
m
m
en
tC
ha
ng
e

So
ur
ce
Fo
rm

at
M
od
ifi
ca
tio
n

So
ur
ce
Fo
rm

at
Co
m
m
en
tC
ha
ng
e

No
nS
rc
Fil
eC
ha
ng
e

M
et
aF
ile
Ch
an
ge
On

ly

Ve
rs
io
nR
el
ea
se

Al
lP
as
sin
gT
es
t

No
Re
ac
ha
bl
eT
es
t

Co
st
-s
av
in
g

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 1: Proportion of builds that CI-Skip rules could save.

NonSrcFileChange and NoReachableTest provide medium
cost-saving (20% and 43.8% respectively).

These observations also show us that the majority of
builds skipped by CI-Skip rules were skipped by only two
rules: NonSrcFileChange and NoReachableTest (with the
exception of AllPassingTest). Thus, for developers look-
ing for a simple way to skip builds based on a rule-of-
thumb, we could advise them to focus only on NonSrc-
FileChange and NoReachableTest, and they would save
almost the same amount of builds as if they applied every
single CI-Skip rule — since all other rules save little cost
in comparison.

4.3. RQ2: How safe is each CI-Skip rule?
Ideally, CI-Skip rules not only can save a reasonable

amount of builds, but are also safe. To study this second
aspect in this research question, we measured the ratio of
failing builds among the builds under each CI-Skip rule
in each studied project. We show the distribution of such

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

7

CI-Skip rules

So
ur
ce
Co
m
m
en
tC
ha
ng
e

So
ur
ce
Fo
rm

at
M
od
ifi
ca
tio
n

So
ur
ce
Fo
rm

at
Co
m
m
en
tC
ha
ng
e

No
nS
rc
Fil
eC
ha
ng
e

M
et
aF
ile
Ch
an
ge
On

ly

Ve
rs
io
nR
el
ea
se

Al
lP
as
sin
gT
es
t

No
Re
ac
ha
bl
eT
es
t

Fa
ili
ng

ra
tio

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 2: Proportion of failing builds among builds under each CI-
Skip rule.

ratios in Figure 2. For example, if 30% of builds with
only non_source file changes (NonSrcFileChange) fail, it
means that the likelihood to miss a failing build by Non-
SrcFileChange is 30%.

4.3.1. Result
Figure 2 shows that all CI-Skip rules had a relatively

low fail ratio (i.e., all their median values are below 11%),
but none of them were completely safe to apply.
Thus, it is not 100% safe to simply use CI-Skip rules to
achieve cost-saving in practice.

Among CI-Skip rules, MetaFileChangeOnly had the
highest fail ratio (median 11%) which means that rela-
tively often changes in meta files can result in build fail-
ures. It also provides low potential cost savings (§4.2.1).
Thus, applying MetaFileChangeOnly manually would not
be an effective way to safely skip builds.

We also found that SourceCommentChange, SourceFor-
matModification and SourceFormatCommentChange were
highly safe (with median 0% failing builds). Unfortu-
nately, they also provide very few opportunities to save
cost, as seen in §4.2.1. NonSrcFileChange and NoReach-
ableTest have a relatively low fail ratio based on our obser-
vations and they can also provide considerable cost-saving.
Also, NonSrcFileChange is easy to implement in the real
world, making it one of the best CI-Skip rules to apply
manually in practice.

In summary, we found that CI-Skip rules have limita-
tions: some of them provide few opportunities to save cost,
and none are fully safe. Some of them do provide a rea-
sonable trade-off of cost-saving and safety, but since none
are fully safe, we propose to not apply them manually.

Table 2: Studied CI-Run rules that may override CI-Skip rules.

CI-Run rules Short Description
BuildScripts The commits in this build modify

build scripts.
ConfigurationFiles The commits in this build modify

configuration files.
SubsequentFailures The build has already broken.
IncreasingPlatforms The build is tested in more

platforms than its previous build.

We instead propose an automated technique that predicts
which builds to skip using CI-Skip rules as features (§6).

5. Empirical Study 2: Supplementing CI-Skip
rules

From Empirical Study 1, we found that CI-Skip rules are
not 100% safe, especially those that produce higher cost-
savings (NonSrcFileChange, AllPassingTest and NoReach-
ableTest). In this next study, we aim to improve the
trade-off of cost-saving and safety provided by CI-Skip
rules. For that goal, we provide a collection of CI-Run
rules that could complement CI-Skip rules to make them
safer. CI-Run rules capture characteristics of builds that
would intuitively signal that the build may fail, even when
a CI-Skip rule applies. We then studied what ratio of the
failing builds under each CI-Skip rule are covered by these
CI-Run rules, and how strongly they discriminate between
failing and passing builds under each CI-Skip rule.

5.1. Studied Factors: CI-Run rules

We designed four CI-Run rules that we believed could
flag builds that fail under a CI-Skip rule, based on our ex-
periences. We thought about possible causes for builds to
fail that developers may not expect, i.e., that may cause
failures even under the conditions described by CI-Skip
rules. We also consulted the research literature that char-
acterizes failing builds, looking for those that could still
apply under CI-Skip rules. We list our proposed CI-Run
rules in Table 2.

BuildScripts (BS): We realized that the NonSrc-
FileChange (NSF) CI-Skip rule included build scripts.
However, we believed that changes in build scripts may
still cause failures, such as when dependencies change. For
example, when a build depends on new modules (e.g., be-
cause they migrated from Python 3.7 to 3.8), some func-
tions may not work any more or may raise warnings be-
cause they are not supported (e.g., the importlib load
module() is abandoned in python 3.10). Furthermore, we
also found that previous work also reported that changes
in build scripts could cause build failures [36]. This rule
is triggered when a build changes a build-script file (e.g.,
“pom.xml” or “build.gradle”).

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

8

ConfigurationFiles (CF): In our experience, another
source of unexpected failures could be when changes hap-
pen in the configuration file for the CI engine. These
changes would also be captured by the NonSrcFileChange
(NSF) CI-Skip rule. We thought that such changes could
cause failures, for example, when the script command is
mistakenly input with a wrong flag and fails. This rule is
triggered when a build changes the configuration file for
the CI engine (i.e., “travis.yml”).

SubsequentFailures (SF): We also thought that, even
if a build falls under a CI-Skip rule, it could still fail if
the source code is already broken — if a previous defect
was not correctly fixed. Builds under some CI-Skip rules,
e.g., NonSrcFileChange (NSF), are less likely to break the
build, but for the same reason they are also less likely to
fix it if it was broken in the previous build. Previous work
also reported that the subsequent build to a failing build
is also likely to fail [3]. This rule is triggered when a failing
build preceded the current build.

IncreasingPlatforms (IPN): Another situation
which we could envision builds failing even under CI-Skip
rules is when the software will be tested in a new platform.
A build can have multiple jobs, and each job is deployed
and tested in different platforms. Even when no other
changes happen in source code, bringing a new platform
may cause new defects to emerge. This rule is triggered
when the number of platforms for a build increases.

5.2. RQ3: What proportion of failing builds under CI-Skip
rules are covered by our CI-Run rules?

Our proposed CI-Run rules will be most effective in
making CI-Skip rules safer if they cover a large propor-
tion of the builds that failed under the rules. Thus, we
measure the distribution of failing builds that fall under
each possible combination of CI-Run rules for each CI-Skip
rule. For example, a failing build that only contains Subse-
quentFailures falls into a different category from the failing
build that satisfies both SubsequentFailures and Configu-
rationFiles. Figure 3 shows the distribution of any com-
bination of CI-Run rules present in failing builds under
CI-Skip rules for any studied project.

5.2.1. Result
In Figure 3, we can observe that most of failing builds

under CI-Skip rules are captured by these four CI-
Run rules. In particular, 97% of VersionRelease failing
builds can be captured by CI-Run rules.

Among these four CI-Run rules, we can observe that
SubsequentFailures is the dominant factor for making
builds fail under CI-Skip rules. At least 64% of failing
builds under each CI-Skip rule can be explained by one
combination including SubsequentFailures. This is be-
cause builds with seemingly-safe changes normally do fix
an already-present defect, so the build continues to fail.
For CI-Skip rules SourceCommentChange, SourceFormat-
Modification and SourceFormatCommentChange, as they

only exist for changes on source files, they cannot be cap-
tured by BuildScripts and ConfigurationFiles by defini-
tion. The most present CI-Run rule for these 3 rules was
SubsequentFailures.

For NonSrcFileChange, the CI-Run rule of BuildScripts
occupies the second largest population (37%), while Con-
figurationFiles and IncreasingPlatforms take 11% and 2%
respectively, which means build scripts and configura-
tion files as non_source files can also make the build
fail. SubsequentFailures and ConfigurationFiles take the
same highest proportion (68%) of MetaFileChangeOnly
failing builds, while the combination of Subsequent-
Failures+ConfigurationFiles is the most popular (44%).
This is because ConfigurationFiles is a major compo-
nent of meta files. IncreasingPlatforms also covers 11%
of MetaFileChangeOnly failing builds. This shows that
changes on meta files sometimes also include increasing
platform numbers. BuildScripts captures 92% of Version-
Release failing builds, showing that most of VersionRelease
builds modify build scripts. AllPassingTest and NoReach-
ableTest have similar composition. NoReachableTest has
a higher proportion of BuildScripts (19%) and Configu-
rationFiles (6%) than AllPassingTest does (BuildScripts
15%, ConfigurationFiles 4%) because changes on these
non_source files have no reachable test intuitively.

Finally, we also investigated some of those cases where
build failures were not covered by the CI-Run rules — we
labeled them as “Other” in Figure 3. In our investigation,
we learned that these builds failed for multiple varied rea-
sons, in addition to those described in CI-Run rules. How-
ever, we did not find any of these reasons appearing more
than a handful of times — i.e., they likely would not be
generalizable. For example, a few failing builds under CI-
Skip rules (8 out of 5,684) failed because of broken links
in JavaDoc comments, which can cause a build to fail —
e.g., a build under the SourceCommentChange rule only
contained changes in JavaDoc, but it changed a link to
an incorrectly-named code entity, which broke the build
(abdeldahak/jackson-core: 8a6a899). Also, a few other
failing builds under CI-Skip rules (7 out of 5,684) failed
because they used custom names for build scripts (e.g.,
with no file extension). So, these builds were captured
by the NonSrcFileChange CI-Skip rule, but in truth the
build process had been modified, and failed (rspec/rspec-
mocks:7f0828a).

5.3. RQ4: How helpful are CI-Run rules at discriminat-
ing between failing and passing builds under CI-Skip
rules?

Some CI-Run rules are dominant in failing builds under
specific CI-Skip rules, but their popularity may be sim-
ply because they are widespread in builds under this rule.
That is, they still may not discriminate between passing
and failing builds among those captured by a CI-Skip rule.
To learn that, we did an experiment to calculate the cor-
relation between the presence of each CI-Run rule and the
ratio of builds that failed under each CI-Skip rule.

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

So
urc
eC
om
me
ntC
ha
ng
e

So
urc
eF
orm

atM
od
ific
ati
on

So
urc
eF
orm

atC
om
me
ntC
ha
ng
e

No
nS
rC
on
fig
ura
tio
nF
ile
sile
Ch
an
ge

Me
taF
ile
Ch
an
ge
On
ly

Ve
rsi
on
Re
lea
se

All
Pa
ssi
ng
Te
st

No
Re
ac
ha
ble
Te
st

CI-Skip rules

other

IncreasingPlatforms

BuildScripts

ConfigurationFiles

SubsequentFailures

BuildScripts+IncreasingPlatforms

ConfigurationFiles+IncreasingPlatforms

ConfigurationFiles+BuildScripts

SubsequentFailures+IncreasingPlatforms

SubsequentFailures+BuildScripts

SubsequentFailures+ConfigurationFiles

ConfigurationFiles+BuildScripts+IncreasingPl
atforms
SubsequentFailures+BuildScripts+Increasing
Platforms
SubsequentFailures+ConfigurationFiles+Incr
easingPlatforms
SubsequentFailures+ConfigurationFiles+Buil
dScripts
SubsequentFailures+ConfigurationFiles+Buil
dScripts+IncreasingPlatforms

Figure 3: Distribution of failing builds captured by CI-Run rules under each CI-Skip rule.

We divided builds under each CI-Skip rule into four
groups: with each CI-Run rule pass, with each CI-
Run rule fail, without each CI-Run rule pass and with-
out each CI-Run rule fail. For example, if we want
to study the correlation between failing builds under
SourceCommentChange and BuildScripts, we firstly di-
vide all SourceCommentChange builds from all projects
into four groups: with BuildScripts passing builds, with-
out BuildScripts passing builds, with BuildScripts fail-
ing builds and without BuildScripts failing builds. We
calculate correlation as the effect size using Cramer’s V,
which is designed for measuring the association between
nominal variables. We then test for statistical signifi-
cance using the Chi Square test. The sample size in
this experiment for each CI-Skip rule was SourceCom-
mentChange: 1035, SourceFormatModification: 1264,
SourceFormatCommentChange: 229, NonSrcFileChange:
13103, MetaFileChangeOnly: 1329, VersionRelease: 2889,
AllPassingTest: 73465, NoReachableTest: 34578.

5.3.1. Result
We report in Table 3 the results of this experiment. We

leave cells blank when the correlation between a CI-Run
rule under a CI-Skip rule and failing builds was not statis-
tically significant (p_value >= 0.05). We found that Sub-
sequentFailures had a strong correlation with fail-
ing builds under every CI-Skip rule. SubsequentFail-
ures was also the only correlated CI-Run rule with failing
builds under SourceCommentChange, SourceFormatMod-
ification, SourceFormatCommentChange and VersionRe-
lease. With the results in RQ3 and RQ4, we can con-
clude that SubsequentFailures is the major CI-Run rule
that makes CI-Skip rules unsafe. This reflects that those

changes are mostly safe, but cannot fix the broken build.
Under other CI-Skip rules, failing builds also have

a correlation with BuildScripts, ConfigurationFiles and
IncreasingPlatforms. Among them, failing builds un-
der NoReachableTest and NonSrcFileChange have cor-
relations with all CI-Run rules, and failing builds un-
der MetaFileChangeOnly and AllPassingTest have correla-
tions with three CI-Run rules: ConfigurationFiles, Subse-
quentFailures, and IncreasingPlatforms. This shows that
changes on build scripts and configuration files can also
make some rules unsafe. Among them, changes on config-
uration files have a stronger correlation than changes on
build scripts. This indicates that changes on project con-
figuration files can be more risky. Though the effect size is
small, we think they are still effective because most of the
builds under each rule are passing builds and these cor-
related CI-Run rules can help predict failing builds. We
also note that IncreasingPlatforms was a correlated CI-
Run rule even if it was less popular in RQ3. This shows
that projects rarely increased the platform set where they
build, but when they did, it correlated with builds failing
under NonSrcFileChange, MetaFileChangeOnly, AllPass-
ingTest, and NoReachableTest. This findings can be used
to warn developers when the program is going to be tested
on more platforms.

6. Our Approach: PreciseBuildSkip

In our empirical studies, we observed that CI-Skip rules
have a reasonable potential for cost savings (RQ1) and
are relatively safe (RQ2), although not 100% so. We also
identified CI-Run rules that capture the majority of fail-
ing builds under CI-Skip rules (RQ3), and identified how

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

10

Table 3: Correlation between CI-Run rules and failing builds under CI-Skip rules.

CI-Run Rules
BuildScripts ConfigurationFiles SubsequentFailures IncreasingPlatforms

C
I-S

ki
p

R
ul

es

SourceCommentChange 0.83
SourceFormatModification 0.83

SourceFormatCommentChange 0.82
NonSrcFileChange 0.06 0.07 0.83 0.05

MetaFileChangeOnly 0.11 0.82 0.07
VersionRelease 0.8
AllPassingTest 0.03 0.79 0.04

NoReachableTest 0.02 0.04 0.82 0.05

strongly they can discriminate between builds that will
pass and builds that will fail (RQ4). These observations
show that practitioners could manually use CI-Skip rules
to save cost, but not 100% safely, even when they also
apply our CI-Run rules.

Thus, we also created PreciseBuildSkip, a novel tech-
nique to allow practitioners to automatically predict which
builds to skip, while maximizing the number of build fail-
ures that are observed (i.e., not skipped). PreciseBuild-
Skip takes advantage of both CI-Skip rules (except All-
PassingTest) and CI-Run rules as features. Our intuition
is that by training PreciseBuildSkip with CI-Skip rules
and CI-Run rules, its predictions will be highly safe, i.e.,
it will prefer to err executing passing builds than to erring
skipping failing ones. We train it as a cross-project predic-
tor (i.e., we train PreciseBuildSkip in the past builds
of different software projects than the one in which we
apply it). This helps with the cold-start problem [61] in
software projects for which only a few builds have been
executed and thus they need additional data for training
[62]. PreciseBuildSkip then predicts the outcome of
each build and only executes those that it predicts to fail.
Finally, we make PreciseBuildSkip customizable, i.e.,
we can customize its prediction sensitivity to varying levels
of tolerance to skipping failing builds.

7. Experiment 1: Evaluating PreciseBuildSkip

We evaluate PreciseBuildSkip in three ways. First
(RQ5), we evaluate the correctness of its predictions, us-
ing the traditional metrics for prediction tasks: precision,
recall, F1, and AUC. Then (RQ6), we evaluate the impact
that PreciseBuildSkip’s predictions provide to develop-
ers in more practical terms — how much cost they allow
them to save, and how many build failures they allow them
to observe. Finally (RQ7), we evaluate how much build
time PreciseBuildSkip allows developers to save, when
we account for the overhead of executing it.

RQ5 teaches us the quality of PreciseBuildSkip’s pre-
dictions — irrespective of its context of usage, and RQ6
teaches us the benefit and drawback that developers can
obtain from them in more practical terms — cost saving
and failure observation. Then, RQ7 teaches us the extent

to which the cost (execution time) of running Precise-
BuildSkip threatens the cost (execution time) it saves.

7.1. Research Method
We describe the details of our evaluation below.

7.1.1. Studied Techniques
We evaluated PreciseBuildSkip in two versions.

First, our proposal, PreciseBuildSkip, using a random-
forest classifier (§6). Second, PBS_RB, as a rule-based
variant of PreciseBuildSkip, to represent the cost-
saving and safety that a developer would observe when
manually using our set of CI-Skip rules (except AllPass-
ingTest) and CI-Run rules. We also replicated all existing
build-selection techniques for our evaluation.

PreciseBuildSkip (PBS): Our proposed approach (see
§6). Since it is customizable, we evaluate it for multi-
ple prediction-sensitivity thresholds: 0–0.1 (101 data
points in this range). This is the range of thresholds
for which we observed PBS provide a range of different
levels of cost savings. Higher prediction sensitivities
make PBS more likely to predict builds to pass. This
will let us observe the multiple trade-offs that it could
achieve in terms of cost saving and safety.

PBS_RB: A rule-based approach including all CI-Skip
rules (except AllPassingTest) and their correspond-
ing CI-Run rules. This variant goes through our list
of CI-Skip rules (except AllPassingTest), and skips
builds under them when none of their correlated CI-
Run rules are present.

Jin20 [3]: A 2-phase build selection approach, using a
random-forest classifier with size features. Since Jin20
is a customizable approach that can be set to varying
prediction sensitivities, we replicated its most conser-
vative (safest) configuration, as described in its origi-
nal paper. This means that we configured its predic-
tor to have a prediction sensitivity of 0, which causes
it to have a strong preference to predict build failures
— the predictor will predict builds to fail, unless it is
100% confident that it will pass.

Abd19 [1]: The first rule-based build selection approach
based on CI-Skip rules, which uses a subset of

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

11

our studied CI-Skip rules (SourceCommentChange,
SourceFormatCommentChange, NonSrcFileChange,
MetaFileChangeOnly and VersionRelease). We repli-
cated Abd19 by using the data in TravisTorrent for
the number of source files changed. For other rules,
we downloaded each software project locally, used
Python (lib git.Repo) to request commit messages,
changed files, and changed lines for each commit.
Then, after each rule, was ready, we ran the simu-
lation to skip one build whose all commits follow at
least one rule.

Abd20 [21]: A machine-learning approach (also random-
forest classifier) using Abd19’s CI-Skip rules as fea-
tures. We replicated Abd20 following the same pro-
cess of replicating Abd19: we git cloned the project
and requested the commit information using Python.
Since Abd20 requires more rules, we implemented ad-
ditional steps to replicate it. For example: I mined
the author names and commit time, for the rule that
considers recent expertise.

7.1.2. Training and Testing
We used the same data set as Empirical Study 1 and 2,

which includes 82,427 builds from 100 projects (see §3.1)
We use 10-fold cross validation (each fold has 10 projects)
to evaluate machine-learning-based techniques: Precise-
BuildSkip and Jin20. Each build in the testing fold is
tested by a classifier trained on the other 90 projects.
Abd20, however, can not be trained in our dataset. Abd20
trains its classifier with developer-skipped commits, and
our dataset has too few of these commits. So, we trained
Abd20 in the 10-project dataset in which it was originally
evaluated [21], and tested it in ours (see §3.1). Rule-based
techniques (PBS_RB and Abd19) do not require training.
So, we applied them directly to our dataset.

As in past work [3], we simulated a realistic scenario
in which the outcomes of builds that are skipped are not
available for coming predictions. That is, we only update
the information connected to the last build, e.g., Subse-
quentFailures, when it was actually executed (not when
it was skipped). When a predictor predicts the upcoming
build as a pass, we skip the build and accumulate the value
of its size factors (such as number of changed source files)
for the next build, also as past work did [3].

7.1.3. Metrics
We measured three sets of metrics, one for each research

question in this experiment.
RQ5: To measure the correctness of PreciseBuild-
Skip’s predictions, we used four metrics.

Precision: the number of correctly predicted build fail-
ures, divided by the number of builds that the technique
predicted as build failures. We expect PreciseBuild-
Skip to provide low precision (by design), since it aims to
maximize the observation of build failures.

Recall: the number of correctly predicted build failures,
divided by the number of actual build failures. For the
same reason, we expect PreciseBuildSkip to provide
high recall.

F1 score: the harmonic mean between precision and
recall. We expect PreciseBuildSkip to provide low F1
score, since we expect it to provide low precision.

AUC: the Area Under the ROC (Receiver Operating
Characteristic) Curve. We expect PreciseBuildSkip to
provide low AUC score, since we expect it to provide low
precision.
RQ6: To understand how much PreciseBuildSkip
could benefit developers, we measured three metrics: Cost
Saving, Observed Failures and Skipped Failure Relative
Density (SFRD). The first metric was included in all prior
works [3, 21, 1], and the second metric was covered in an
existing work [3]. The last metric is designed in this pa-
per to measure how strongly a technique targeted skipping
passing builds.

Cost Saving. To measure how much of the computa-
tional cost of CI a technique reduced, we measure the pro-
portion of builds that it skipped, among all builds. By this
metric, a technique that skipped (i.e., avoided the com-
putational cost of executing) a high proportion of builds
highly reduced the computational cost of CI.

CostSaving = # skipped builds
all builds

Observed Failures is the proportion of failing builds that
are correctly predicted and not skipped, among all failing
builds. It measures a technique’s ability of detecting failing
builds. A technique performs better in this metric if it
catches more failing builds.

ObservedFailures = 1− # skipped failing builds
all failing builds

We also designed the Skipped Failure Relative Density
(SFRD) metric. It measures the fail ratio in skipped builds
divided by the fail ratio in all builds. This metric allows us
to understand how strongly one technique can discriminate
passing and failing builds. A lower value in this metric in-
dicates a better performance. A technique performs better
in this metric if it skips builds with a lower fail ratio than
the original fail ratio of all builds. This metric has two val-
ues with special meanings. The metric value of 1 means
that a technique achieved roughly the same trade-off as
skipping builds randomly. The metric value of 0 means
that a technique observes all failing builds.

SFRD = fail ratio of skipped builds
fail ratio of all builds

RQ7: To understand how much the overhead of running
PreciseBuildSkip impacts its provided cost savings, we
measured one metric.

Saved Build Duration: This metric gives us different in-
formation than our earlier “Cost Saving” metric in RQ6,
since it accounts for the time that it takes to run builds in
CI. This metric measures the proportion of build-execution

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

12

time that a technique skipped, among all build-execution
time — i.e., the cumulative execution time of all the builds
that a technique skipped, divided by the cumulative exe-
cution time of all builds (skipped or not).

We compare the Saved Build Duration including Pre-
ciseBuildSkip’s execution time and excluding it — to
understand its overhead. We measured PreciseBuild-
Skip’s execution time by including the time for running
its feature techniques and its own prediction time.

7.2. Results for RQ5: How correct are PreciseBuild-
Skip’s predictions?

Figure 4 shows the results for this research question.
This figure shows the median value for each metric across
studied projects. The Y axis represents the metric for
evaluation and the X axis is the prediction sensitivity for
PreciseBuildSkip.

To be able to compare PBS with existing techniques, we
highlight four prediction thresholds of interest for it (see
Figure 4-Recall). Safe: the highest threshold that pro-
vides 100% recall. Moderate: the threshold that provides
the closest recall to Abd20’s. Relaxed: the threshold that
provides the closest recall to Jin20’s. More relaxed: the
threshold that provides the closest recall to Abd19’s. We
also highlight PBS’s scores for the same prediction thresh-
olds for the remaining metrics in Figure 4.

In Figure 4-Precision, we can observe that almost all
techniques have low (and very similar) precision scores
(lower than 0.1). This is by design, since all these tech-
niques are designed to be highly safe, i.e., they are conser-
vative and predict many builds to fail. The exception is
PreciseBuildSkip, which obtains higher precision scores
as we configure it with higher prediction thresholds.

The counterpart to precision is recall. Figure 4-Recall
shows that most techniques obtain high recall — by de-
sign, i.e., for the same reason that they obtain low pre-
cision. However, the range of their recall scores is more
varied than their precision scores, allowing us to differ-
entiate among them more clearly. In terms of recall, the
best-performing technique was PBS, achieving 100% recall
for its Safe threshold — and keeping a precision score that
is similar to all other techniques’. As we increased its pre-
diction threshold, PBS’s precision increases and its recall
decreases.

In terms of F1 score (see Figure 4-F1 score), most tech-
niques achieve low values, as a result of their low precision.
We observe a similar effect for AUC scores in Figure 4-
AUC.

In summary, all studied techniques achieved very close
precision scores, but they differentiated themselves in
terms of recall — for which PBS obtained the highest
score.

7.3. Results for RQ6: How much cost-saving and safety
do PreciseBuildSkip’s predictions provide?

We plot the results for this research question in Figure 5.
This figure shows the median value for each metric across

Safe

Moderate Relaxed

More relaxed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Pr
ec
is
io
n

Threshold

PBS
PBS_RB

Jin20
Abd20
Abd19

Safe

Moderate Relaxed

More relaxed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Re
ca
ll

Threshold

PBS

PBS_RB
Jin20
Abd20

Abd19

Safe

Moderate Relaxed

More relaxed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

F1
sc
or
e

Threshold

PBS
PBS_RB

Jin20
Abd20
Abd19

Safe Moderate
Relaxed

More relaxed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

AU
C
sc
or
e

Threshold

PBS

PBS_RB
Jin20
Abd20

Abd19

Figure 4: Performance comparison on predicting build failures.

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

13

Safe Moderate

Relaxed

More relaxed

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Co
st
Sa
vi
ng

Threshold

PBS

PBS_RB
Jin20
Abd20

Abd19

Safe

Moderate Relaxed

More relaxed

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

O
bs
er
ve
d
Fa
ilu

re
s

Threshold

PBS

PBS_RB
Jin20
Abd20

Abd19

Safe

Moderate

Relaxed
More relaxed

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

SF
RD

Threshold

PBS

PBS_RB
Jin20
Abd20

Abd19

Figure 5: Cost saved and value kept by evaluated techniques.

studied projects. The Y axis represents the metric for
evaluation and the X axis is the prediction sensitivity for
PreciseBuildSkip.

We first make observations from comparisons among ex-
isting techniques. We can observe that Abd19 is the ex-
isting technique that achieves highest Cost Saving. Abd19
is able to save 22.3% builds while Jin20 and Abd20 save
18.6% and 5.2% respectively. Abd20 is the safest tech-
nique that observes most failing builds among existing ap-
proaches. It can observe 96% of build failures while Jin20
observes 87% and Abd19 observes 81% failing builds. We
can also observe that Jin20 performs best SFRD. SFRD of
Jin20 is 0.71 in while Abd20 and Abd19 achieves 0.94 and
0.96 respectively. From these observations, we can find
that each exiting approach has its own strengths and none
of them can be really safe.

We also make a few observations about how PBS per-

forms across prediction thresholds. First, PreciseBuild-
Skip shows little impact when the threshold is smaller
than 0.014, which means it observes all failing builds by
seldom skipping builds. Then along with the increasing of
the threshold, i.e., making the predictor less sensitive to
the build failures, Cost Saving increases and Observed Fail-
ures drops. However, Observed Failures starts dropping
later than Cost Saving’s increasing, i.e., SFRD remains at
0, which means in this range PreciseBuildSkip is able to
observe all build failures and save some cost. In the most
optimized scenario, our approach can save 5.5% of builds
and observe all build failures. After that, Cost Saving
gets continuously increasing and Observed Failures gets
decreasing correspondingly until they come to the ending
scenario where all builds are skipped and no failing builds
is observed, making SFRD reach 1.

Next, we compare PreciseBuildSkip with existing
techniques by highlighting the same prediction thresholds
discussed for RQ5 (see §7.2). First, we observe that PBS
is able to achieve 5.5% Cost Saving while keeping 100%
Observed Failures in a safe mode (threshold 0.047). This
shows that PBS can observe more build failures than safest
existing work (Abd20) did and provides slightly more cost-
saving meanwhile. PBS also achieves the best SFRD as
a value of 0 at this point. Second, in a moderate
scenario (threshold 0.052), PreciseBuildSkip can save
12.9% Cost Saving and keep 96% Observed Failures com-
pared with Abd20. This shows that PBS can observe same
amount of failing builds as Abd20 (96%) but increases Cost
Saving from 5.2% to 12.9%. Also, PreciseBuildSkip
performs better at SFRD at this point (0.45 vs. 0.94).
Third, in a relaxed scenario (threshold 0.055), Precise-
BuildSkip can save 25.8% cost and observe 87.6% failing
builds at the same time. Compared with the existing tech-
nique that is best at cost-saving (Abd19), PBS can observe
more failing builds (Abd19 81%) and more Cost Saving
as well (Abd19 22.3%). Besides, PBS at this point also
achieves a smaller value of SFRD (0.52) than Abd19 does
(0.96). Fourth, in a more relaxed scenario (threshold
0.059), PreciseBuildSkip can save 34.8% cost and ob-
serve 81% failing builds at the same time. Compared with
Abd19, PBS can observe same amount of failing builds
(81%) but increases Cost Saving from 22.3% to 34.8%. Be-
sides, PBS also achieves a lower SFRD (0.55). We lastly
find that all variants we point out above have a better
performance on SFRD than all existing techniques.

Finally, we observed that PBS_RB works well as a rule-
based technique that is easy to use and requires no training
data. It achieves the SFRD of 0.5 which is better than all
existing techniques. The performance of PBS_RB is very
similar to the performance of PBS at threshold 0.059 and
it can save 32% of cost saving while observing 83% of build
failures.

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

14

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Sa
ve
d
D
ur
at
io
n

Threshold

PBS without execution time PBS with execution time

Figure 6: Build time saved by PreciseBuildSkip including and ex-
cluding its execution time.

7.4. Results for RQ7: How much overhead does Precise-
BuildSkip add to build duration?

We answered this question by comparing the build time
saved by PreciseBuildSkip, with and without account-
ing for its execution time. We plot the results for this
research question in Figure 6. This figure shows the me-
dian value for each metric across studied projects. The Y
axis represents the metric for evaluation and the X axis is
the prediction sensitivity for PreciseBuildSkip.

We see in Figure 6 that accounting for PreciseBuild-
Skip’s execution time has negligible impact on the cost
that it saves in terms of build duration. PreciseBuild-
Skip’s execution duration generally takes only 0.5% of the
saved build duration, e.g., PreciseBuildSkip saved 5.5%
of build duration at threshold 0.047, 5.1% after we deduct
its execution time. Furthermore, as PreciseBuildSkip’s
prediction threshold increases, its overhead decreases, i.e.,
its execution time becomes a smaller and smaller propor-
tion of its build time saved as it saves more and more build
time.

8. Experiment 2: Evaluating the impact of CI-Run
rules in PreciseBuildSkip

In this experiment, we evaluate the impact of CI-Run
rules on our approach (among specific variants pointed in
§7.3). We aim to understand how our approach performs
with and without CI-Run rules in term of saved cost and
kept value.

8.1. Research Method
We use the same data set and simulation process as

Experiment 1. We also use the same three measurement
metrics (Cost Saving, Observed Failures and SFRD) that
the variants would provide in practice for evaluation.

8.1.1. Studied PreciseBuildSkip (PBS) variants
We evaluate PreciseBuildSkip with other variants of

it, including rule-based variants and variants without CI-
Run rules.

PBS_Safe: The safe variant of our original approach
(threshold 0.047), keeping all build failures observed
and saving as much cost as possible, same as the first
point in §7.3.

PBS_IC_Safe: The safe variant (threshold 0.135) of in-
complete version of our approach using only CI-Skip
rules (except AllPassingTest) as features, saving sim-
ilar amount of cost as PBS_Safe.

PBS_Moderate: The moderate variant of our origi-
nal PBS (threshold 0.052), observing as many failing
builds as Abd20 did, same as the second point in §7.3.

PBS_IC_Moderate: The moderate variant (threshold
0.16) of incomplete version of our approach using only
CI-Skip rules (except AllPassingTest) as features, sav-
ing similar amount of cost as PBS_Moderate.

PBS_Relaxed: The relaxed variant of our original ap-
proach (threshold 0.055), observing as many failing
builds as Abd19 did, same as the third point in §7.3.

PBS_IC_Relaxed: The more relaxed variant (thresh-
old 0.163) of incomplete version of our approach
using only CI-Skip rules (except AllPassingTest)
as features, skipping similar amount of builds as
PBS_Relaxed.

PBS_More_Relaxed: The more relaxed variant of our
original PBS (threshold 0.059), saving similar amount
of cost as Abd19 did, same as the third point in the
result of RQ5.

PBS_IC_More_Relaxed: The more relaxed variant
(threshold 0.164) of incomplete version of our ap-
proach using only CI-Skip rules (except AllPass-
ingTest) as features, skipping similar amount of builds
as PBS_More_Relaxed.

PBS_RB: Our rule-based approach included in Experi-
ment 1.

PBS_RB_IC: The incomplete version (no CI-Run
rules) of PBS_RB, skipping rules when any of the
CI-Skip rules is fulfilled.

8.2. Results for RQ8: What is the impact of including
CI-Run rules as features in PreciseBuildSkip?

We plot the results of this experiment in Figure 7 for
the evaluation of all variants. The boxes in these box
plots for each metric represent its distribution of values
for all the studied projects. We discuss our observed dif-
ferences in results in terms of absolute percentage point
differences over the median value of each metric across
projects. All differences in this result are statistically sig-
nificant (p_value < 0.01).

We can observe that the variants of PBS_IC in general
observe less build failures and save similar or less amount
of cost as their corresponding PBS variants. Among them,
PBS_IC_Safe can observe 97.2% failing builds and it can
save 5.1% of cost saving, which means it performs worse
in both metrics than its corresponding PBS variant (5.5%,
100%). Compared with PBS_Moderate (12.9% Cost Sav-
ing and 96% Observed Failures), PBS_IC_Moderate per-
forms worse in both metrics (11.6% and 92.4%). Also,we

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

15

compare PBS_IC_Relaxed and PBS_Relaxed and find
that the former’s Cost Saving (20.3%) is lower than the
latter’s (25.8%) and Observed Failures is lower as well
(85.4% vs. 87.6%). Besides, PBS_IC_More_Relaxed
achieves 23.8% in Cost Saving and 82% in Observed Fail-
ures while PBS_More_Relaxed achieves 34.8% and 81%
respectively.

We then make observations on SFRD. We can find
that all variants of PBS_IC has higher SFRD than
their corresponding PBS variants. Since one approach
has a better ability to distinguish failing and passing
builds if it has a lower value of SFRD, we can con-
clude that PBS variants can discriminate failing builds
more accurately than PBS_IC variants. Among them,
PBS_IC_Safe also has a value of 0.74 SFRD which is
worse than PBS_Safe. Besides, PBS_IC_Moderate and
PBS_IC_Relaxed also have a higher SFRD (0.93 and
0.96) compared to their corresponding variants (0.45 and
0.55). Finally, PBS_IC_More_Relaxed’s SFRD’s value
reaches 1 which means it performs same as randomly pick.

Therefore, given that the variants of PBS_IC have lower
values of Observed Failures with similar values of Cost Sav-
ing and higher values of SFRD than the corresponding
variants of PBS, we can reach a conclusion that CI-Run
rules are able to complement CI-Skip rules and supplement
our approach to better discriminate failing and passing
builds.

Finally, we make observations to compare PBS_RB and
its corresponding technique, PBS_RB_IC. We can find
that PBS_RB_IC has a higher value in Cost Saving and
a lower value in Observed Failures (47% and 46%), giv-
ing it a high value of 1 in SFRD. This shows that CI-Run
rules are also essential when be applied our rule_based
techniques by complementing CI-Skip rules to better dis-
criminate failing and passing builds.

9. Experiment 3: Evaluating PreciseBuildSkip
when trained on Builds affected by Build-
selection

After build selection techniques have been used for some
time, the available training data (build executions and
their outcomes) would only contain selected builds, i.e.,
only the builds that the build-selection technique decided
to run. To understand the impact on PreciseBuild-
Skip’s effectiveness of being trained on such selected builds,
we performed this experiment.

9.1. Research Method
We use the same research method as Experiment 2, ex-

cept for the details below.

9.1.1. Studied Techniques
In this experiment, we study the following techniques:

PBS_Safe, PBS_Moderate, PBS_Relaxed, PBS_More-
relaxed, Abd20, and Jin20, as described in Experiment 2

Techniques

PB
S_
Sa
fe

PB
S_
In
co
m
pl
et
e_
Sa
fe

PB
S_
M
od

er
at
e

PB
S_
In
co
m
pl
et
e_
M
od

er
at
e

PB
S_
Re

la
xe
d

PB
S_
In
co
m
pl
et
e_
Re

la
xe
d

PB
S_
M
or
e_
Re

la
xe
d

PB
S_
In
co
m
pl
et
e_
M
or
e_
Re

la
xe
d

PB
S_
Ru

le
ba

se

PB
S_
Ru

le
ba

se
_I
nc
om

pl
et
e

Co
st
Sa
vi
ng

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Techniques

PB
S_
Sa
fe

PB
S_
In
co
m
pl
et
e_
Sa
fe

PB
S_
M
od

er
at
e

PB
S_
In
co
m
pl
et
e_
M
od

er
at
e

PB
S_
Re

la
xe
d

PB
S_
In
co
m
pl
et
e_
Re

la
xe
d

PB
S_
M
or
e_
Re

la
xe
d

PB
S_
In
co
m
pl
et
e_
M
or
e_
Re

la
xe
d

PB
S_
Ru

le
ba

se

PB
S_
Ru

le
ba

se
_I
nc
om

pl
et
e

O
bs
er
ve
d
Fa
ilu

re
s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Techniques

PB
S_
Sa
fe

PB
S_
In
co
m
pl
et
e_
Sa
fe

PB
S_
M
od

er
at
e

PB
S_
In
co
m
pl
et
e_
M
od

er
at
e

PB
S_
Re

la
xe
d

PB
S_
In
co
m
pl
et
e_
Re

la
xe
d

PB
S_
M
or
e_
Re

la
xe
d

PB
S_
In
co
m
pl
et
e_
M
or
e_
Re

la
xe
d

PB
S_
Ru

le
ba

se

PB
S_
Ru

le
ba

se
_I
nc
om

pl
et
e

SF
RD

0

0.5

1

1.5

2

2.5

3

Figure 7: Cost saved and value kept by evaluated PreciseBuildSkip
variants including and excluding CI-Run rules.

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

16

(see §8.1.1). We omit two of the techniques that we studied
in earlier experiments — PBS_RB and Abd19 — because
they are not affected by training on selected builds — they
are rule-based and thus do not use a training step.

9.1.2. Training and Testing
We followed a different training and testing process in

this experiment.
First, for each studied technique, we simulated having

applied it to the whole dataset. We did that by execut-
ing the technique for build selection over every build of
every project, as described for Experiment 1 (see §7.1.2).
We refer to the outcome of this step as the selected-builds
dataset for that technique.

Then, for each technique, we simulated training it in
projects that had already applied build selection. We
achieved that by again applying the training-testing steps
for Experiment 1 (see §7.1.2), but this time taking its
training folds from its selected-builds dataset and the test-
ing folds from the original dataset.

9.2. Results for RQ9: How much cost-saving and safety
does PreciseBuildSkip provide when trained on
projects that use build selection?

We plot the results for this research question in Figure 8.
The boxes in these box plots for each metric represent its
distribution of values for all the studied projects. The Y
axis represents the metric for evaluation and the X axis is
the studied technique variant. For ease of comparison, we
represent side by side the results of each technique when
trained on the original dataset — using the technique’s
original name — and when trained on its selected-builds
dataset — adding to its name the _Selected suffix.

We see in Figure 8 that all techniques provided very
similar results when trained on projects that used build
selection than when they were trained on projects that did
not. Thus, training them on data that had already been
modified by their build selection had a negligible impact
on their effectiveness.

We believe that this is because most techniques are gen-
erally conservative in skipping builds — they are more
likely to decide to run a build than to skip it. As a result,
the impact that they had when applied to produce the
selected-builds dataset was limited enough to only negligi-
bly impact their effectiveness when they used it for train-
ing.

In more detail, PBS_Safe_Selected obtained the
same median Observed Failures (100%) and SFRD (0),
but decreased its Cost Saving from 5.5% to 5.3%.
PBS_Moderate_Selected had the same median Ob-
served Failures (96%), but decreased its Cost Sav-
ing from 12.9% to 12.4%. PBS_Relaxed_Selected ob-
tained the same median Observed Failures (87.6%),
but increased its Cost Saving from 25.8% to 27.1%.
PBS_More_Relaxed_Selected had less median Observed
Failures from 81% to 80%, but its Cost Saving increased

Techniques

PB
S_
Sa
fe

PB
S_
Sa
fe
_S
el
ec
te
d

PB
S_
M
od

er
at
e

PB
S_
M
od

er
at
e_
Se
le
ct
ed

PB
S_
Re

la
xe
d

PB
S_
Re

la
xe
d_

Se
le
ct
ed

PB
S_
M
or
e_
Re

la
xe
d

PB
S_
M
or
e_
Re

la
xe
d_

Se
le
ct
ed

Ab
d2

0

Ab
d2

0_
Se
le
ct
ed

Jin
20

Jin
20
_S
el
ec
te
d

Co
st
Sa
vi
ng

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Techniques

PB
S_
Sa
fe

PB
S_
Sa
fe
_S
el
ec
te
d

PB
S_
M
od

er
at
e

PB
S_
M
od

er
at
e_
Se
le
ct
ed

PB
S_
Re

la
xe
d

PB
S_
Re

la
xe
d_

Se
le
ct
ed

PB
S_
M
or
e_
Re

la
xe
d

PB
S_
M
or
e_
Re

la
xe
d_

Se
le
ct
ed

Ab
d2

0

Ab
d2

0_
Se
le
ct
ed

Jin
20

Jin
20
_S
el
ec
te
d

O
bs
er
ve
d
Fa
ilu

re
s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Techniques

PB
S_
Sa
fe

PB
S_
Sa
fe
_S
el
ec
te
d

PB
S_
M
od

er
at
e

PB
S_
M
od

er
at
e_
Se
le
ct
ed

PB
S_
Re

la
xe
d

PB
S_
Re

la
xe
d_

Se
le
ct
ed

PB
S_
M
or
e_
Re

la
xe
d

PB
S_
M
or
e_
Re

la
xe
d_

Se
le
ct
ed

Ab
d2

0

Ab
d2

0_
Se
le
ct
ed

Jin
20

Jin
20
_S
el
ec
te
d

SF
RD

0

0.5

1

1.5

2

2.5

3

Figure 8: Cost saved and value kept by evaluated techniques when
being trained under pre-selected data.

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

17

from 34.8% to 37.9%. Abd20_Selected had less median
Observed Failures from 96% to 95%, but its Cost Saving
increased from 5.2% to 6%. Jin20_Selected obtained more
median build failure observations from 87% to 90.5%, but
its Cost Saving dropped from 18.6% to 16.3%.

10. Implications

10.1. For practitioners.
From the findings of Empirical Study 1, we find that de-

velopers’ intuitions may not always be correct, i.e., skip-
ping builds based on their favors may result in missing
build failure observations. Therefore, developers should
be more cautious when skipping builds by CI-Skip rules.
Instead, developers may be able to refer to CI-Run rules
and make their decisions based on both CI-Skip rules and
CI-Run rules.

We believe that the largest barrier for adopting a CI
build selection approach is that developers may be afraid
of skipping failing builds. In other words, the concern of
delaying failing build observation can be the main reason
that build selection approach is not adopted. This implies
the motivation for a build selection technique with no mis-
predictions. Thus, we propose PreciseBuildSkip as a
precise technique that minimizes the observed build fail-
ures of build selection while providing some cost-savings
at the same time.

In contrast, other developers may be looking for a way
to reduce CI’s high-cost barrier [7] to adopt it, even if
it means observing build failures less quickly. Precise-
BuildSkip provides configurations with a more liberal
sensitivity for these developers: save the cost of 35% of
their builds and still observe 81% failing builds with no
delay (and the remaining 19% with a 1-build delay). Be-
sides, when there is no training data available, develop-
ers can still get benefit from PreciseBuildSkip by using
its rule-based version (PBS_RB). Furthermore, our novel
metric, SFRD, is able to provide developers a chance to
pick preferable build selection techniques in a more com-
prehensive way.

10.2. For researchers.
From the result of RQ5 and RQ6, we can find that Sub-

sequentFailures (subsequent failures) is the main CI-Run
rule that makes CI-Skip rules invalid. This is because
when the build has already been broken, the only way
to turn it to pass is to fix the defect, rather than make
any safe changes. Existing work [3][63] also found that
the build is hard to transit status, i.e., failing builds are
likely to be followed by another build failure. This implies
SubsequentFailures could be an important feature when
detecting defects.

In this study, we tried different ways to take advantage
of SubsequentFailures. We firstly used it as a feature for
our predictor. However, the last build status is only avail-
able when the last build is executed. Therefore, when the

predictor becomes less sensitive to the failing builds, i.e.,
the threshold increases which means less failing builds are
observed, SubsequentFailures is more often not updated
in time and this makes the predictor harder to predict a
failing build. That’s why the predictor almost predicts
every build to pass when the threshold is 0.1. If we take
an alternative approach — execute the subsequent build
of a failing build normally until we find a pass instead of
triggering the predictor every time, the curve can be flat-
tened. However, we will have less cost-saving, since we
execute one passing build after a failing build anyway. As
a result, we decided to use SubsequentFailures as a feature
and let developers tune the technique in a tinier range.

Finally, we observe that if we keep most failure obser-
vations, the cost-saving remains low. This implies there is
an opportunity for more CI-Skip rules coming out to con-
tribute to cost-saving. For example, builds with changes
on some specific subsystem of the source code is likely to be
builds that can be safely skipped. Also, different projects
may have different preferences on choosing CI-Skip rules
and CI-Run rules, e.g., faults caused by IncreasingPlat-
forms may be acceptable to some projects. Besides, since
AllPassingTest works well in §4, there are other ways to
approximate it, e.g., test selection techniques [13] can pre-
dict the result of tests. If all tests are predicted to pass,
then AllPassingTest is valid.

11. Threats to Validity

11.1. Construct Validity
We use metrics as proxies to represent the value —

observation of build failures — and cost — build execu-
tion — in CI. However, these are metrics that develop-
ers have reported as describing the value and cost of CI,
e.g., [4, 35, 2, 64], and are metrics that other existing ap-
proaches for saving cost in CI have used, e.g., [13, 1]. We
didn’t include the metric designed in previous work [3] as
the harmonic mean of Cost Saving and Observed Failures
since this metric dislikes the scenario where Observed Fail-
ures is maximized (difference between it and Cost Saving
is relatively big) which is the goal of this paper. Instead,
we designed a new metric in this paper called SFRD to
compare build selection techniques in a more comprehen-
sive way. We also didn’t include the metric of failing build
delay [3], since the delay of skipped failing builds should
be 1 by nature in our scenario because there is not enough
space for long delay by relatively low cost saving.

Another threat to construct validity is whether devel-
opers want to skip passing builds to save cost in CI. Our
work targets those developers that want to skip passing
builds to reduce the cost of CI, but we recognize that not
all developers may want this. Some developers may have
different preferences and thus may prefer to use other tech-
niques, e.g., approaches that predict build outcome but do
not skip any build [37, 35].

Reducing the cost of CI by skipping passing executions
is a common strategy in the research literature. Many

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

18

approaches have been proposed to skip the execution of
passing tests [8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
and passing builds [3]. Furthermore, when asked about
the characteristics of the builds that they manually skip,
developers for the most part describe builds that will likely
pass, i.e., they skip builds with: non-source code changes,
with no test coverage, with trivial source code changes, or
with other likely-to-pass characteristics, i.e., refactoring
changes [1].

Finally, developers may want to also skip other builds,
in addition to passing builds (e.g., builds that they know
will fail [1]). In such situations, developers may still apply
our proposed approach to skip passing builds, and combine
it with other approaches to skip other kinds of builds.

11.2. Internal Validity
To guard internal validity, we carefully tested our eval-

uation tools on subsets of our dataset while developing
them. Our analysis could also be influenced by incor-
rect information in our analyzed dataset. Our results may
be affected by flaky tests causing spurious failing builds
— particularly when calculating the AllPassingTest and
NoReachableTest CI-Skip rules. However, CI is expected
to function even in the presence of flaky tests, since most
companies do not consider it economically viable to re-
move them, e.g., [13, 65]. Also, since flaky tests tend to
be a minority of the wider population of tests (according to
existing studies [8]) and since we did not include AllPass-
ingTest as a feature for PreciseBuildSkip, we believe
that flaky test had a limited influence on our experiments.

Another threat to internal validity comes from the fact
that we defined CI-Run rules according to our personal
experiences. So, there may be other CI-Run rules that
could be useful in complementing CI-Skip rules, but that
we did not report in this study. However, the CI-Run
rules that we defined covered the large majority of failing
builds under CI-Skip rules (> 70%). Still, to better un-
derstand the extent of this threat, we further investigated
the failing builds under CI-Skip rules for which none of
our CI-Run rules applied, i.e., the ”Other” category. We
found that these failing builds rarely followed common pat-
terns, and when they did, they appeared in only a handful
of instances, making it hard for them to generalize (see
Section 5.2.1). In the light of these observations, it seems
that defining additional CI-Run rules on top of the ones
included in this project increasingly becomes an effort of
capturing corner cases that are specific to a given software
project or given development habits. Therefore, for those
software projects that wanted to improve the safety of our
approach even further by defining even more CI-Run rules,
we recommend them to define additional CI-Rules that
capture the corner cases that are specific to their software
project and practices.

Our decision of defining NoReachableTest to consider
only static dependencies may have slightly limited Pre-
ciseBuildSkip’s results. Some static dependencies in the
source code may never be triggered during its execution.

This means that NoReachableTest could have some false
positives, potentially making PreciseBuildSkip execute
some builds with test cases that depend on the changes,
but that will not trigger them during the software’s ex-
ecution. Therefore, the alternative of applying dynamic
dependency analysis could have made PreciseBuildSkip
save even more cost. However, such optimization decisions
can have hidden costs [66]. Applying dynamic analysis is
more computationally expensive, which could also cancel
some of the cost savings provided by its higher accuracy.

The accuracy of the tools that we used to run static anal-
ysis (SciTools Understand [59] and rubrowser [60]) could
also have impacted the ability of PreciseBuildSkip to
save cost via the NoReachableTest CI-Skip rule. We used
these tools to capture static dependencies between source
code classes. SciTools Understand captured the follow-
ing dependencies among classes: ”calls”, ”implements”,
”includes/imports”, ”inherits”, ”inits”, ”modifies”, ”over-
rides”, ”sets”, ”throws”, and ”uses”. Rubrowser captured
all modules and classes definitions, and all constants that
are listed inside a module/class and linked them together.
Then, we used the resulting graph of classes and depen-
dencies among them from these tools to determine if the
changed files were reachable by the a project’s test cases. A
possible threat to validity is that bugs in the source code of
these tools may make them miss some dependencies (false
negatives), or capture some dependencies that do not re-
ally exist (false positives), which could affect the accuracy
with which PreciseBuildSkip applied NoReachableTest
to skip builds. Also, since both SciTools Understand [59]
and rubrowser [60] capture static dependencies, they both
can have false positives (capturing dependencies that will
not be executed in runtime). Such false positives would
cause PreciseBuildSkip save less cost than it could, if
we had used dynamic analysis tools.

Another threat could be the risk of over-fitting in our
empirical study 2 (§5), since we performed it over our
complete data set — since we aimed to increase the gen-
eralizability of our observed correlated features. To ad-
dress the over-fitting risk, we repeated our study on the
chronologically earlier half of data for our features through
stratified random sampling [67] on number of builds. The
selected features remained the same. Furthermore, Pre-
ciseBuildSkip is a cross-project predictor that is not af-
fected by the threat of violating the chronological order of
builds that are used to train and test, since it was trained
in different projects than it was tested. We also increase
our internal validity by following the existing techniques’
instructions to replicate their techniques, including using
the same machine learning algorithm.

11.3. External Validity
To increase external validity, we studied a popular

dataset that is prevalent among continuous integration
studies: TravisTorrent [68]. TravisTorrent was created
in 2016, but it continues to be studied in many research
projects. Many of the techniques to save cost in CI

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

19

[1, 63, 3, 54] were originally evaluated on TravisTorrent
projects (some as recently as 2020). Additionally, we ex-
tensively curated TravisTorrent, removing: toy projects
following standard practice [34, 35], unusable projects for
test-granularity techniques, and cancelled builds as in past
work [33, 58, 57]. After this curation process, our studies
involved 82,427 builds from 100 different software projects.
This high number of studied builds and projects gives us
a higher confidence that the results of this work are likely
to generalize to other projects.

The projects we chose were all Java or Ruby projects
(18% of projects are Ruby projects), because there are no
projects with other programming languages in the data set.
Although these two programming languages are popular,
different CI habits in other languages may provide slightly
different results to the ones in this study.

Also for external validity, we decided to not remove tan-
gled commits from our studied dataset. This is so that our
study reflected the impact of CI-Skip rules and of our pro-
posed technique in a realistic scenario, i.e., in software
projects that in practice may contain tangled commits.
While tangled commits are deviations from the best prac-
tice of keeping commits small and single-purpose, they are
a common occurrence in practice. Past work found that
up to 16% of change sets associated with bug reports ad-
dress multiple concerns [69]. This way, our study better
captures the diversity of changes that go through CI in
practice.

Another threat to external validity questions whether
the thresholds used to highlight different configurations of
PBS (Safe, Moderate, Relaxed, and More relaxed) will
generalize to other projects. We do not present these
thresholds as absolute values to be reused across soft-
ware projects. These values may not generalize to other
projects. We simply highlight them to allow for compar-
ison with existing work. Our advice for developers using
PBS in their software project is to empirically customize
its prediction thresholds to their preference, for their soft-
ware project.

Finally, our cost-saving technique may not be perfectly
suitable for software projects that seldom build following
any CI-Skip rules. However, this happens rarely according
to our dataset.

12. Conclusions and Future Work

In this article, we aimed to maximize build failure ob-
servation and save cost in CI. To achieve this goal, we
firstly studied the safety of CI-Skip rules and found that
these rules are not perfectly safe. We then developed a set
of CI-Run rules that make those rules invalid. We stud-
ied these CI-Run rules and found that they are correlated
with failing builds under CI-Skip rules. Then we encoded
our findings into PreciseBuildSkip, a novel build se-
lection technique that can capture the majority of failing
builds and provide cost-saving at the same time. Finally

we evaluated our approach and compared it with existing
techniques.

PreciseBuildSkip’s variants improved existing ap-
proaches in term of Observed Failures and Cost Saving,
i.e., PreciseBuildSkip is able to save cost in a safer
way. We highlight two specific variants that we posit will
be popular: the safe one, which saves 5.5% builds and gen-
erally captures all of failing builds, and a version that is
better at Cost Saving: saves 35% of builds while keeping
81% of failing build observations. Nevertheless, Precise-
BuildSkip provides many other trade-offs that could be
desirable in different environments. In the future, we will
work on extending PreciseBuildSkip’s algorithm with
other machine learning algorithms and more CI-Skip rules
to gain more benefit in cost-saving while keeping capturing
all failing builds. Besides, we will find other ways to char-
acterize failing builds based on the test execution history
and habits (e.g., [70, 71, 72]), source code history (e.g.,
[73, 74, 75, 76, 77]), or the rationale of the commits being
built (e.g., [78]).

13. Acknowledgements

This material is based upon work supported by the Na-
tional Science Foundation under award CCF-2046403, and
by Universidad Rey Juan Carlos under the International
Distinguished Researcher award C01INVESDIST.

References

[1] R. Abdalkareem, S. Mujahid, E. Shihab, J. Rilling, Which com-
mits can be ci skipped?, IEEE Transactions on Software Engi-
neering (2019).

[2] M. Fowler, M. Foemmel, Continuous integration, Thought-
Works) http://www. thoughtworks. com/Continuous Integra-
tion. pdf 122 (2006) 14.

[3] X. Jin, F. Servant, A cost-efficient approach to building in con-
tinuous integration, in: Proceedings of the 42th International
Conference on Software Engineering, 2020, pp. 13–25.

[4] M. Hilton, T. Tunnell, K. Huang, D. Marinov, D. Dig, Us-
age, costs, and benefits of continuous integration in open-source
projects, in: Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ACM, 2016,
pp. 426–437.

[5] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, D. Dig, Trade-
offs in continuous integration: assurance, security, and flexibil-
ity, in: Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ACM, 2017, pp. 197–207.

[6] G. Pinto, M. Rebouças, F. Castor, Inadequate testing, time
pressure, and (over) confidence: a tale of continuous integration
users, in: Proceedings of the 10th International Workshop on
Cooperative and Human Aspects of Software Engineering, IEEE
Press, 2017, pp. 74–77.

[7] D. G. Widder, M. Hilton, C. Kästner, B. Vasilescu, A con-
ceptual replication of continuous integration pain points in the
context of travis ci, in: Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ACM, 2019, pp. 647–658.

[8] K. Herzig, M. Greiler, J. Czerwonka, B. Murphy, The art of
testing less without sacrificing quality, in: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering,
Vol. 1, IEEE, 2015, pp. 483–493.

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

20

[9] John O’Duinn , The financial cost of a checkin, [Online;
accessed 25-January-2019] (2013).
URL https://https://oduinn.com/2013/12/13/
the-financial-cost-of-a-checkin-part-2/

[10] S. Elbaum, G. Rothermel, J. Penix, Techniques for improving
regression testing in continuous integration development envi-
ronments, in: Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering,
2014, pp. 235–245.

[11] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siem-
borski, J. Micco, Taming google-scale continuous testing, in:
2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-
SEIP), IEEE, 2017, pp. 233–242.

[12] A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjorner, J. Czer-
wonka, Optimizing test placement for module-level regression
testing, in: 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), IEEE, 2017, pp. 689–699.

[13] M. Machalica, A. Samylkin, M. Porth, S. Chandra, Predictive
test selection, in: 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), IEEE, 2019, pp. 91–100.

[14] C. Zhu, O. Legunsen, A. Shi, M. Gligoric, A framework for
checking regression test selection tools, in: 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE),
IEEE, 2019, pp. 430–441.

[15] L. Zhang, Hybrid regression test selection, in: 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE),
IEEE, 2018, pp. 199–209.

[16] M. Gligoric, L. Eloussi, D. Marinov, Practical regression test
selection with dynamic file dependencies, in: Proceedings of the
2015 International Symposium on Software Testing and Analy-
sis, 2015, pp. 211–222.

[17] S. Yoo, M. Harman, Regression testing minimization, selection
and prioritization: a survey, Software Testing, Verification and
Reliability 22 (2) (2012) 67–120.

[18] S. Yoo, M. Harman, Pareto efficient multi-objective test case
selection, in: Proceedings of the 2007 international symposium
on Software testing and analysis, ACM, 2007, pp. 140–150.

[19] G. Rothermel, M. J. Harrold, A safe, efficient regression test
selection technique, ACM Transactions on Software Engineering
and Methodology (TOSEM) 6 (2) (1997) 173–210.

[20] G. Rothermel, M. J. Harrold, Analyzing regression test selection
techniques, IEEE Transactions on software engineering 22 (8)
(1996) 529–551.

[21] R. Abdalkareem, S. Mujahid, E. Shihab, A machine learning
approach to improve the detection of ci skip commits, IEEE
Transactions on Software Engineering (TSE) (2020) To Appear.

[22] Anonymous, Minimizing the Side Effect of Cost-saving Build
Selection in Continuous Integration, available at https://
doi.org/10.5281/zenodo.4007140 (Aug. 2020). doi:10.5281/
zenodo.4007140.
URL https://doi.org/10.5281/zenodo.4007140

[23] A. Miller, A hundred days of continuous integration, in: Agile
2008 Conference, IEEE, 2008, pp. 289–293.

[24] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leit-
ner, A. Zaidman, M. Di Penta, S. Panichella, A tale of ci build
failures: An open source and a financial organization perspec-
tive, in: 2017 IEEE international conference on software main-
tenance and evolution (ICSME), IEEE, 2017, pp. 183–193.

[25] C. Zhang, B. Chen, L. Chen, X. Peng, W. Zhao, A large-scale
empirical study of compiler errors in continuous integration
(2019).

[26] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, M. Di Penta,
How open source projects use static code analysis tools in con-
tinuous integration pipelines, in: 2017 IEEE/ACM 14th Inter-
national Conference on Mining Software Repositories (MSR),
IEEE, 2017, pp. 334–344.

[27] K. V. Paixão, C. Z. Felício, F. M. Delfim, M. de A Maia, On
the interplay between non-functional requirements and builds
on continuous integration, in: Proceedings of the 14th Interna-

tional Conference on Mining Software Repositories, IEEE Press,
2017, pp. 479–482.

[28] M. Cataldo, J. D. Herbsleb, Factors leading to integration fail-
ures in global feature-oriented development: an empirical anal-
ysis, in: Proceedings of the 33rd International Conference on
Software Engineering, ACM, 2011, pp. 161–170.

[29] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, R. Bowdidge,
Programmers’ build errors: a case study (at google), in: Pro-
ceedings of the 36th International Conference on Software En-
gineering, ACM, 2014, pp. 724–734.

[30] N. Kerzazi, F. Khomh, B. Adams, Why do automated builds
break? an empirical study, in: Software Maintenance and Evo-
lution (ICSME), 2014 IEEE International Conference on, IEEE,
2014, pp. 41–50.

[31] M. Beller, G. Gousios, A. Zaidman, Oops, my tests broke the
build: An explorative analysis of travis ci with github, in: Min-
ing Software Repositories (MSR), 2017 IEEE/ACM 14th Inter-
national Conference on, IEEE, 2017, pp. 356–367.

[32] T. Rausch, W. Hummer, P. Leitner, S. Schulte, An empirical
analysis of build failures in the continuous integration work-
flows of java-based open-source software, in: Proceedings of the
14th International Conference on Mining Software Repositories,
IEEE Press, 2017, pp. 345–355.

[33] K. Gallaba, C. Macho, M. Pinzger, S. McIntosh, Noise and het-
erogeneity in historical build data: an empirical study of travis
ci, in: Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering, ACM, 2018, pp.
87–97.

[34] M. R. Islam, M. F. Zibran, Insights into continuous integration
build failures, in: Mining Software Repositories (MSR), 2017
IEEE/ACM 14th International Conference on, IEEE, 2017, pp.
467–470.

[35] A. Ni, M. Li, Cost-effective build outcome prediction using cas-
caded classifiers, in: 2017 IEEE/ACM 14th International Con-
ference on Mining Software Repositories (MSR), IEEE, 2017,
pp. 455–458.

[36] F. Hassan, X. Wang, Hirebuild: An automatic approach to
history-driven repair of build scripts, in: 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE),
IEEE, 2018, pp. 1078–1089.

[37] F. Hassan, S. Mostafa, E. S. Lam, X. Wang, Automatic building
of java projects in software repositories: A study on feasibility
and challenges, in: 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM),
IEEE, 2017, pp. 38–47.

[38] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov, Quality
and productivity outcomes relating to continuous integration
in github, in: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ACM, 2015, pp. 805–816.

[39] D. Ståhl, J. Bosch, Experienced benefits of continuous integra-
tion in industry software product development: A case study,
in: The 12th iasted international conference on software engi-
neering,(innsbruck, austria, 2013), 2013, pp. 736–743.

[40] M. Leppänen, S. Mäkinen, M. Pagels, V.-P. Eloranta, J. Itko-
nen, M. V. Mäntylä, T. Männistö, The highways and country
roads to continuous deployment, Ieee software 32 (2) (2015)
64–72.

[41] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, B. Vasilescu, The
impact of continuous integration on other software development
practices: a large-scale empirical study, in: Proceedings of the
32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering, IEEE Press, 2017, pp. 60–71.

[42] B. Vasilescu, S. Van Schuylenburg, J. Wulms, A. Serebrenik,
M. G. van den Brand, Continuous integration in a social-coding
world: Empirical evidence from github, in: 2014 IEEE Inter-
national Conference on Software Maintenance and Evolution,
IEEE, 2014, pp. 401–405.

[43] W. Felidré, L. Furtado, D. A. Da Costa, B. Cartaxo, G. Pinto,
Continuous integration theater, in: Proceedings of the 13th
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2019, p. 10.

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/
https://https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/
https://https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/
https://doi.org/10.5281/zenodo.4007140
https://doi.org/10.5281/zenodo.4007140
https://doi.org/10.5281/zenodo.4007140
https://doi.org/10.5281/zenodo.4007140
https://doi.org/10.5281/zenodo.4007140
https://doi.org/10.5281/zenodo.4007140
https://doi.org/10.5281/zenodo.4007140
https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

21

[44] J. Liang, Cost-effective techniques for continuous integration
testing (2018).

[45] T. A. Ghaleb, D. A. da Costa, Y. Zou, An empirical study of
the long duration of continuous integration builds, Empirical
Software Engineering (2019) 1–38.

[46] M. Tufano, H. Sajnani, K. Herzig, Towards predicting the
impact of software changes on building activities, in: 2019
IEEE/ACM 41st International Conference on Software Engi-
neering: New Ideas and Emerging Results (ICSE-NIER), ICSE
’19, 2019.

[47] X. Jin, F. Servant, What helped, and what did not? an eval-
uation of the strategies to improve continuous integration, in:
2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), IEEE, 2021, pp. 213–225.

[48] X. Jin, F. Servant, Cibench: a dataset and collection of tech-
niques for build and test selection and prioritization in con-
tinuous integration, in: 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), IEEE, 2021, pp. 166–167.

[49] Q. Luo, K. Moran, D. Poshyvanyk, M. Di Penta, Assessing test
case prioritization on real faults and mutants, in: 2018 IEEE In-
ternational Conference on Software Maintenance and Evolution
(ICSME), IEEE, 2018, pp. 240–251.

[50] S. Mostafa, X. Wang, T. Xie, Perfranker: prioritization of per-
formance regression tests for collection-intensive software, in:
Proceedings of the 26th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, 2017, pp. 23–34.

[51] D. Marijan, A. Gotlieb, S. Sen, Test case prioritization for
continuous regression testing: An industrial case study, in:
2013 IEEE International Conference on Software Maintenance,
IEEE, 2013, pp. 540–543.

[52] S. Elbaum, A. G. Malishevsky, G. Rothermel, Test case prior-
itization: A family of empirical studies, IEEE transactions on
software engineering 28 (2) (2002) 159–182.

[53] G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold, Prioritizing
test cases for regression testing, IEEE Transactions on software
engineering 27 (10) (2001) 929–948.

[54] J. Liang, S. Elbaum, G. Rothermel, Redefining prioritization:
continuous prioritization for continuous integration, in: Pro-
ceedings of the 40th International Conference on Software En-
gineering, 2018, pp. 688–698.

[55] A. Celik, A. Knaust, A. Milicevic, M. Gligoric, Build system
with lazy retrieval for java projects, in: Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ACM, 2016, pp. 643–654.

[56] A. Gambi, Z. Rostyslav, S. Dustdar, Improving cloud-based
continuous integration environments, in: Proceedings of the
37th International Conference on Software Engineering-Volume
2, IEEE Press, 2015, pp. 797–798.

[57] M. Rebouças, R. O. Santos, G. Pinto, F. Castor, How does
contributors’ involvement influence the build status of an open-
source software project?, in: Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories, IEEE Press,
2017, pp. 475–478.

[58] R. Jain, S. K. Singh, B. Mishra, A brief study on build failures
in continuous integration: Causation and effect, in: Progress
in Advanced Computing and Intelligent Engineering, Springer,
2019, pp. 17–27.

[59] SciTools Understand, Understand static code analysis tool,
https://scitools.com/, [Online; accessed 02-March-2020]
(2020).

[60] Emad Elsaid, Rubrowser (ruby browser), https://github.com/
emad-elsaid/rubrowser, [Online; accessed 21-January-2022]
(2019).

[61] Wikipedia contributors, Cold start (computing) — Wikipedia,
the free encyclopedia, [Online; accessed 21-February-2019]
(2019).
URL https://en.wikipedia.org/w/index.php?title=Cold_
start_(computing)&oldid=883021431

[62] A. I. Schein, A. Popescul, L. H. Ungar, D. M. Pennock, Meth-
ods and metrics for cold-start recommendations, in: Proceed-

ings of the 25th annual international ACM SIGIR conference
on Research and development in information retrieval, 2002,
pp. 253–260.

[63] F. Hassan, X. Wang, Change-aware build prediction model for
stall avoidance in continuous integration, in: 2017 ACM/IEEE
International Symposium on Empirical Software Engineering
and Measurement (ESEM), IEEE, 2017, pp. 157–162.

[64] P. M. Duvall, S. Matyas, A. Glover, Continuous integration: im-
proving software quality and reducing risk, Pearson Education,
2007.

[65] J. Micco, The state of continuous integration testing at google
(2017).

[66] X. Jin, F. Servant, The hidden cost of code completion: Under-
standing the impact of the recommendation-list length on its
efficiency, in: Proceedings of the 15th International Conference
on Mining Software Repositories, 2018, pp. 70–73.

[67] W. G. Cochran, Sampling techniques-3 (1977).
[68] M. Beller, G. Gousios, A. Zaidman, Travistorrent: Synthe-

sizing travis ci and github for full-stack research on continu-
ous integration, in: Mining Software Repositories (MSR), 2017
IEEE/ACM 14th International Conference on, IEEE, 2017, pp.
447–450.

[69] K. Herzig, A. Zeller, The impact of tangled code changes, in:
2013 10th Working Conference on Mining Software Repositories
(MSR), IEEE, 2013, pp. 121–130.

[70] A. Gautam, S. Vishwasrao, F. Servant, An empirical study of
activity, popularity, size, testing, and stability in continuous
integration, in: 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR), IEEE, 2017, pp. 495–
498.

[71] A. M. Kazerouni, C. A. Shaffer, S. H. Edwards, F. Servant, As-
sessing incremental testing practices and their impact on project
outcomes, in: Proceedings of the 50th ACM Technical Sympo-
sium on Computer Science Education, 2019, pp. 407–413.

[72] A. M. Kazerouni, J. C. Davis, A. Basak, C. A. Shaffer, F. Ser-
vant, S. H. Edwards, Fast and accurate incremental feedback
for students’ software tests using selective mutation analysis,
Journal of Systems and Software 175 (2021) 110905.

[73] F. Servant, J. A. Jones, History slicing, in: 2011 26th
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011), IEEE, 2011, pp. 452–455.

[74] F. Servant, J. A. Jones, History slicing: assisting code-evolution
tasks, in: Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, 2012,
pp. 1–11.

[75] F. Servant, J. A. Jones, Chronos: Visualizing slices of source-
code history, in: 2013 First IEEE Working Conference on Soft-
ware Visualization (VISSOFT), IEEE, 2013, pp. 1–4.

[76] F. Servant, J. A. Jones, Fuzzy fine-grained code-history analysis,
in: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), IEEE, 2017, pp. 746–757.

[77] F. Servant, Supporting bug investigation using history analysis,
in: 2013 28th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), IEEE, 2013, pp. 754–757.

[78] K. A. Safwan, F. Servant, Decomposing the rationale of code
commits: the software developer’s perspective, in: Proceedings
of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, 2019, pp. 397–408.

Published version available at: https://doi.org/10.1016/j.jss.2022.111292
©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://scitools.com/
https://github.com/emad-elsaid/rubrowser
https://github.com/emad-elsaid/rubrowser
https://en.wikipedia.org/w/index.php?title=Cold_start_(computing)&oldid=883021431
https://en.wikipedia.org/w/index.php?title=Cold_start_(computing)&oldid=883021431
https://en.wikipedia.org/w/index.php?title=Cold_start_(computing)&oldid=883021431
https://en.wikipedia.org/w/index.php?title=Cold_start_(computing)&oldid=883021431
https://doi.org/10.1016/j.jss.2022.111292
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Related Work
	Characterizing Builds
	Empirical Studies of CI and its Cost
	Approaches to Reduce the Cost of CI

	Research Questions
	Data Set

	Empirical Study 1: Evaluating CI-Skip rules
	Studied Factors: CI-Skip rules
	RQ1: How much cost can each CI-Skip rule save?
	Result

	RQ2: How safe is each CI-Skip rule?
	Result

	Empirical Study 2: Supplementing CI-Skip rules
	Studied Factors: CI-Run rules
	RQ3: What proportion of failing builds under CI-Skip rules are covered by our CI-Run rules?
	Result

	RQ4: How helpful are CI-Run rules at discriminating between failing and passing builds under CI-Skip rules?
	Result

	Our Approach: PreciseBuildSkip
	Experiment 1: Evaluating PreciseBuildSkip
	Research Method
	Studied Techniques
	Training and Testing
	Metrics

	Results for RQ5: How correct are PreciseBuildSkip's predictions?
	Results for RQ6: How much cost-saving and safety do PreciseBuildSkip's predictions provide?
	Results for RQ7: How much overhead does PreciseBuildSkip add to build duration?

	Experiment 2: Evaluating the impact of CI-Run rules in PreciseBuildSkip
	Research Method
	Studied PreciseBuildSkip (PBS) variants

	Results for RQ8: What is the impact of including CI-Run rules as features in PreciseBuildSkip?

	Experiment 3: Evaluating PreciseBuildSkip when trained on Builds affected by Build-selection
	Research Method
	Studied Techniques
	Training and Testing

	Results for RQ9: How much cost-saving and safety does PreciseBuildSkip provide when trained on projects that use build selection?

	Implications
	For practitioners.
	For researchers.

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions and Future Work
	Acknowledgements

