
A Cost-efficient Approach to Building in Continuous Integration
Xianhao Jin

Department of Computer Science
Virginia Tech

Blacksburg, USA
xianhao8@vt.edu

Francisco Servant
Department of Computer Science

Virginia Tech
Blacksburg, USA
fservant@vt.edu

ABSTRACT

Continuous integration (CI) is a widely used practice in modern
software engineering. Unfortunately, it is also an expensive practice
—Google andMozilla estimate their CI systems inmillions of dollars.
In this paper, we propose a novel approach for reducing the cost of
CI. The cost of CI lies in the computing power to run builds and its
value mostly lies on letting developers find bugs early — when their
size is still small. Thus, we target reducing the number of builds
that CI executes by still executing as many failing builds as early
as possible. To achieve this goal, we propose SmartBuildSkip, a
technique which predicts the first builds in a sequence of build fail-
ures and the remaining build failures separately. SmartBuildSkip
is customizable, allowing developers to select different preferred
trade-offs of saving many builds vs. observing build failures early.
We evaluate the motivating hypothesis of SmartBuildSkip, its pre-
diction power, and its cost savings in a realistic scenario. In its most
conservative configuration, SmartBuildSkip saved a median 30%
of builds by only incurring a median delay of 1 build in a median
of 15% failing builds.

CCS CONCEPTS

• Software and its engineering→ Empirical software valida-

tion; Software testing and debugging;Maintaining software;
Software maintenance tools.

KEYWORDS

continuous integration, build prediction, maintenance cost

ACM Reference Format:

Xianhao Jin and Francisco Servant. 2020. A Cost-efficient Approach to
Building in Continuous Integration. In 42nd International Conference on

Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3377811.3380437

1 INTRODUCTION

Continuous integration (CI) is a popular practice in modern soft-
ware engineering that encourages developers to build and test their
software in frequent intervals [15]. For simplicity and consistency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380437

with previous studies, we refer as build to the full process of building
the software and running all the tests when CI is triggered.

While CI is widely recognized as a valuable practice, it also incurs
a very high cost — mostly for the computational resources required
to frequently run builds [24–26, 45, 70]. Overall, adopting CI can be
very expensive. Google estimates the cost of running its CI system
in millions of dollars [26], and Mozilla estimates theirs as $201,000
per month [31]. For smaller-budget companies that have not yet
adopted CI, this high cost can pose a strong barrier.

In this paper, we aim to reduce the high cost of CIwhile keep-
ing as much of its value as possible. The cost of CI is commonly
defined by the cost of builds [26, 43], and its value is defined by its
ability to reveal problems early [10, 15]. Thus, we aim to reduce
the cost of CI by running fewer builds, while running as many

failing builds as early as possible. Our goal also responds to
the need to run fewer builds that developers frequently express in
Q&A websites[61], which they currently may approach by using
CI plug-ins [8, 29, 64] to manually skip builds that they deem “safe”,
e.g., changes in README files.

Existing research approaches to save cost in CI include the au-
tomatic detection of such non-code changes [2] and techniques to
make CI builds faster [24, 37]. In contrast, our proposed approach
focuses on skipping builds that are predicted to pass in more com-
plicated cases — for any kinds of changes that happened between
builds. Our approach complements existing techniques and could
potentially be applied in combination with them.

We propose SmartBuildSkip, a novel approach to reduce the
cost of CI based on automatic build-outcome prediction — by skip-
ping builds that it predicts will pass, and running builds that it
predicts will fail. Our strategy is motivated by two hypotheses: H1:
Most builds in CI return a passing result. We expect that software
changes will generally be done carefully, making passing builds
more common than failing builds. By this hypothesis, skipping pass-
ing builds would produce large cost savings.H2:Many failing builds

in CI happen consecutively after another build failure. One of the
strongest predicting factors in existing build-outcome predictors
is the result of the previous build [23, 43, 73]. Also, Rausch et al.

observed build failures mostly occurring consecutively in a small
number of Java projects [47]. By this hypothesis, most failing builds
could be easily predicted — since most follow another build failure.

Thus, SmartBuildSkip differentiates between first failures
and subsequent failures, following a two-phase process. First,
SmartBuildSkip uses a machine-learning classifier to predict build
outcomes to catch first failures. After it observes a first failure, it
then determines that all subsequent buildswill fail — until it observes
a build pass and then changes its operation to predicting again. This
strategy aims to address the limitations of existing build-prediction
approaches [23, 43, 73], which strongly rely on the outcome of the

https://doi.org/10.1145/3377811.3380437
https://doi.org/10.1145/3377811.3380437

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Xianhao Jin and Francisco Servant

last build, and predict outcome for all builds — likely incorrectly
predicting some first and subsequent failures.

Lastly, we propose SmartBuildSkip as a customizable tech-
nique, in order to help software developers with different cost-
saving trade-off needs, e.g., preferring modest effort savings and
low delays in observing build failures, or preferring high effort
savings with a longer delay to observe build failures.

We performed two empirical studies and two experiments. First,
we empirically studied the hypotheses that motivate SmartBuild-
Skip. Second, we empirically studied the features that predict first
failures, to inform SmartBuildSkip’s predictor. Third, we per-
formed an experiment to evaluate SmartBuildSkip’s ability to
predict first and all failures in a dataset of 359 software projects
and another one of 37 projects. Fourth, we performed another ex-
periment to measure the cost savings that SmartBuildSkip would
produce in our studied datasets.

In our experiments, we compared SmartBuildSkip’s perfor-
mance with the state-of-the-art build prediction technique, HW17
[23]. HW17 makes machine-learning predictions for all builds, us-
ing both historical and contemporary build information. To the
extent of our knowledge, HW17 is the build-prediction technique
that currently provides the highest precision and recall.

SmartBuildSkip provides two major strengths over HW17: (1)
SmartBuildSkip runs predictions only for first failures, and deter-
mines that all subsequent builds fail until a pass is observed. (2)
SmartBuildSkip predicts based only on features describing the
current build and the project (using no features about the previous
build). We found that this strategy was more effective at predicting
both first and subsequent failures (see §7). Additionally, we found
that, by not relying on the outcome of the previous build, Smart-
BuildSkip was much more effective in practice. Since the previous
build was often skipped and its outcome unknown, HW17 was
negatively impacted, but not SmartBuildSkip (observed in §8).

The results of our studies support our hypotheses — build passes
are numerous (median 87% of all builds), and subsequent failures

are also a high proportion of all build failures (median 52%). In our
experiments, SmartBuildSkip significantly improved the accuracy
of the state-of-the-art build predictor — up to median 8% F-measure
for first failures, and up to median 52% F-measure for all failures.
Finally, SmartBuildSkip’s predictions resulted in high savings of
build effort that could be customized for developers with differ-
ent preferred trade-offs, i.e., faster observation of build failures vs.
higher savings in build effort. In its most conservative configura-
tion, SmartBuildSkip saved a median 30% of all builds by only
incurring a median delay of 1 build in a median 15% build failures. In
a more cost-saving-focused configuration, SmartBuildSkip saved
a median 61% of all builds by incurring a 2-build delay for 27% of
build failures. This paper provides the following contributions:

• The conceptual separation of build failures into first and
subsequent failures, to improve the effectiveness of build
prediction models.

• Two studies, of the prevalence of build passes over build
failures, and of subsequent failures over first failures.

• A study of factors that predict first failures.
• SmartBuildSkip, a customizable, automatic technique to
save cost in CI by predicting build outcomes, that can be

applicable with or without training data, and that improves
the prediction effectiveness of the state-of-the-art.

• A collection of simple predictors, based on factors that pre-
dict first failures, that can be applied as a rule-of-thumb, with
no adoption cost.

• An evaluation of the extent to which SmartBuildSkip can
save cost in CI while keeping most of its value, with the
ability of customizing its cost-value trade-off.

2 MOTIVATING HYPOTHESES

We motivate our hypotheses and our proposed approach with an
example. Figure 1 depicts an example timeline of builds, the ideal
timeline in which we would save most effort, the timeline produced
after applying a state-of-the-art build prediction technique, and the
timeline produced after applying our approach SmartBuildSkip.
The example timeline shows a numbered sequence of builds in CI.
We depict passing builds as circles with a P and failing builds as
circles with an F. The ideal timeline shows the outcome that an
ideal technique would achieve — skipping every passing build and
building all failing builds. We depict skipped builds with a dashed
empty circle. This ideal timeline depicts our goal of saving cost
in CI by running as few builds as possible while running as many
failing builds as possible.

We propose SmartBuildSkip following two main hypotheses:
H1: Most builds in CI return a passing result. If this was true,
our strategy of predicting build outcomes and skipping those ex-
pected to pass would provide substantial cost savings — since
passing builds would be a majority and they would be skipped.
H2: Many failing builds in CI happen consecutively after an-

other build failure. If true, if we built an automatic approach that
predicted that subsequent builds to a failing build will also fail, we
would correctly predict a substantial portion of failing builds.

First failures vs. subsequent failures. Assuming that our hy-
pothesis H2 would be supported, we also propose the distinction
between first failures — the first build failure inside a sequence of
build failures — and subsequent failures — all the remaining consec-
utive build failures in the sequence. Figure 1 highlights first failures
with gray fill.

Limitations of existing work. Figure 1 also illustrates the limi-
tations of applying existing build predictors (e.g., [23, 43, 73]) to
the problem of saving cost in CI by skipping passing builds. The
timeline for “existing build predictors” uses a diamond to depict the
prediction of the outcome of an upcoming build. If the upcoming
build is predicted to pass, the technique skips it and transitions to
predict for the next build. We depict this with an arrow leaving the
diamond and going into the next diamond, e.g., in build 2. If the
upcoming build is predicted to fail, it is executed. We depict this
with an arrow leaving the diamond and going into the next build.
We posit that existing predictors, by not distinguishing first and
subsequent failures, likely provide limited accuracy for both.

Limited prediction of first failures. We posit that existing predictors
will rarely correctly predict first failures, because they strongly rely
on the status of the previous build for prediction. first failures are
preceded by a build pass, by definition. However, we expect that
it’s more often build passes that are preceded by a build pass. Thus,

A Cost-efficient Approach to Building in Continuous Integration ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

P PF PP F P P P P P

1 2 3 4 5 6 7 8 9 10 11

Example Timeline

FP F P P

PP F P

Our approach
(SmartBuildSkip)

Existing build
predictors

F FIdeal Timeline

F

12

F F F P

13 14 15 16

F F F F

F

F F F P

Figure 1: Motivating example timeline. first failures are highlighted in gray. In an ideal timeline, we would skip all passing

builds and run all failing builds. Existing approaches predict outcome for every build. Our approach predicts build outcome

if the last build passed. After observing a failure, it continues building until a pass is observed and it goes back to predicting.

after observing a build pass, we expect that existing predictors
will more likely predict another build pass to follow — likely not
catching many first failures. SmartBuildSkip, in turn, does not
suffer from this limitation, since it does not rely on the outcome of
the last build for its prediction.

Limited prediction of subsequent failures. Since existing techniques
predict outcome for all builds — even after observing a first fail-
ure, they may incorrectly predict some subsequent failures to pass.
SmartBuildSkip, in turn, will correctly anticipate subsequent fail-
ures, since it does not make predictions for them. Instead, it deter-
mines that subsequent builds to a failure will also fail.

3 OUR APPROACH: SMARTBUILDSKIP

We designed SmartBuildSkip by following the two hypotheses
that we described in §2. We also include the timeline produced by
SmartBuildSkip for our motivating example in Figure 1.

SmartBuildSkip’s overall strategy. SmartBuildSkip follows
a two-phase strategy. In its first phase, SmartBuildSkip predicts
the outcome of the next build based on a set of predicting features
(see §6). If the build is predicted to pass, it is not executed — its
cost is saved — and SmartBuildSkip will predict again for the next
build. An example is build 5 in Figure 1. If the build is predicted
to fail, SmartBuildSkip executes it and checks its outcome. If the
actual outcome of the executed build is pass, SmartBuildSkip will
predict again for the next build — as in build 8 in Figure 1. If the
actual outcome of the executed build is fail, SmartBuildSkip will
shift to its second phase — as in build 2 in Figure 1. In its second
phase, SmartBuildSkip determines that all subsequent builds will
fail and thus executes them until the build passes, after which it
returns to the first phase — as in builds 2–4 in Figure 1.

The benefit of this two-phase strategy is that we expect Smart-
BuildSkip to be more successful at identifying both first failures

and subsequent failures, by treating them separately. We expect it
to predict first failures better than existing techniques, since we
train SmartBuildSkip’s predictor using features that specifically
predict first failures. We also expect it to accurately predict most
subsequent failures by determining that all builds after a failing one
will also fail.

The downside of this approach is that, by continuously building
after observing a first failure, one false positive is guaranteed for

every sequence of failures — as in builds 5 and 8 in Figure 1. How-
ever, we believe that this downside is smaller than the benefit that
SmartBuildSkip gets from its overall strategy. Besides, existing
predictors will also likely incur in these false positives because
they strongly rely on the last build status — which in these cases
is a bad predictor. Finally, we argue that these first-pass builds are
valuable for practitioners, because they inform them of when they
have fixed the problem that caused the build to fail.

SmartBuildSkip’s Variants.We propose two variants of Smart-
BuildSkip. Both variants use a random forest classifier to predict
builds. Since our focus is to correctly predict failing builds, and since
we expect CI build output to often be imbalanced, SmartBuildSkip
trains with a class weight of 20:1 in favor of failing builds.
SmartBuildSkip-Within: This variant is trained in the past

builds within the same software project in which it is applied.
It uses the build features that we report in §6.

SmartBuildSkip-Cross: This variant is trained in the past builds
of different software projects than the one in which it will
be applied. It uses the build features as well as the project
features that we report in §6. We propose this variant to
help with the cold-start problem [71] in software projects
for which only a few builds have been executed and they
would not be enough to provide high-quality predictions.

4 RESEARCH QUESTIONS

We perform two empirical studies to test our hypotheses and inform
the design of SmartBuildSkip. Then, we perform two experiments
to evaluate it. In our studies and experiments, we answer the fol-
lowing research questions:
Empirical Study 1: Evaluating our Motivating Hypotheses

RQ1: Are passing builds more numerous than failing builds?
RQ2: Are subsequent failures numerous?
Empirical Study 2: Characterizing first failures
RQ3: What features predict first failures?
Experiment 1: SmartBuildSkip for Build Prediction

RQ4: How effective is SmartBuildSkip predicting first failures?
RQ5: How effective is SmartBuildSkip predicting all failures?
Experiment 2: SmartBuildSkip for Build Effort Reduction

RQ6: How many resources, i.e. builds, will SmartBuildSkip save?
RQ7: What is the value trade-off for such resource savings?

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Xianhao Jin and Francisco Servant

Study Subjects. We perform our study over the TravisTorrent
dataset [3], which includes 1,359 projects (402 Java projects and 898
Ruby projects) with data for 2,640,825 build instances. We remove
“toy projects” from the data set by studying those that are more than
one year old, and that have at least 200 builds and at least 1,000 lines
of source code, which is a criteria applied in multiple other works
[27, 43]. After this filtering, we obtained 274,742 builds from 359
projects (53,731 failing builds). We focused our study on builds with
passing or failing result, rather than error or canceled — since they
can be exceptions or may happen during the initialization and get
aborted immediately before the real build starts. Besides, in Travis
a single push or pull-request can trigger a build with multiple jobs,
and each job corresponds to a configuration of the building step
[16, 81]. We did a preliminary investigation of these builds and
found that these jobs with the same build ID normally share the
same build result and build duration. Thus, as many existing papers
have done [16, 28, 48], we considered these jobs as a single build.
We applied LOD [60] to remove outliers that have higher or lower
than three standard deviations above or below the mean number
of the failing ratio.

5 EMPIRICAL STUDY 1: EVALUATING OUR

MOTIVATING HYPOTHESES

RQ1: Are passing buildsmore numerous than failing builds?

We first evaluate our motivating hypotheses to understand if our
approach to save build effort in CI is promising. Our first hypothesis
posits that passing builds will be numerous — and thus skipping
them would provide high build-effort savings in CI.

Research Method. We measured the ratio of passing builds to all
builds in each studied project, and we show the distribution of such
ratios in Figure 2.

Result. For most projects, the passing builds represented a very large
proportion — with a median 88% (and a mean 84%) of all builds
passing. This result supports our hypothesis that skipping passing
builds would strongly save build effort in CI, since they generally
represented a large portion of the executed builds. Furthermore,
this result also shows the upper bound for how many builds could
be saved — given a “perfect” technique that would correctly predict
every single passing build.

RQ2: Are subsequent failures numerous? Our next hypothesis
posits that subsequent failures will be numerous — and thus pre-
dicting that subsequent builds to a failing build will also fail would
correctly predict a substantial portion of failing builds.

Research Method.Wemeasured the proportion of subsequent failures
to all failures for each project (e.g., in a build history P-F-F-F-P,
the ratio of subsequent failures to all failures is 2/3). We show the
distribution of these proportions for all projects in Figure 3.

Result. Figure 3 supports the hypothesis that subsequent failures are
numerous, i.e., there are many of them. A high number of projects
had a high (i.e.,, not low) ratio of subsequent failures: >52% for 50% of
projects, and >38% for >75% of projects. Thus, our approach would
correctly predict a high proportion of all build failures, since we
expect it to correctly predict all subsequent failures. Once it observes
a failure, it would correctly predict all the subsequent ones.

Passing builds

Pr
op

or
tio

n
of

 a
ll

bu
ild

s

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Figure 2: Ratio of passing builds to all builds. Passing builds

represent a vast portion of all builds.

Subsequent failures

Pr
op

or
tio

n
of

 a
ll

fa
ilu

re
s

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Figure 3: Ratio of subsequent failures to all build failures.
More than half of all build failures are subsequent failures.

6 EMPIRICAL STUDY 2: CHARACTERIZING

FIRST FAILURES

RQ3: What features predict first failures? We found that sub-
sequent failures are numerous and easy to predict. Next, we will
focus on predicting first failures. To inform our prediction tech-
nique, we perform a second empirical study to identify features
that characterize them.

Research Method. We study two different kinds of features to
characterize first failures: build features and project features. As
build features, we selected all the features included in TravisTorrent
that previous studies found to be correlated with all build failures,
e.g., [27, 47]. Our goal was to study whether such features are
also correlated with first failures. Then, to be able to address the
cold-start problem [71], we also created four project features that
could be used for cross-project predictions. Our intuition is that
project features would aid the classifier in “adapting” its trained
model across projects of different characteristics — since projects
using continuous integration are diverse [18]. To the extent of our
knowledge, no previous work studied the correlation between all

build failures (or first failures) and these project features (as defined
by us, with a single value per project). We list in Table 1 the features
that we studied, along with a brief description.

Build features. Build features will be useful to train our approach
with past builds from the same software project. To identify build
features that have a relationship with first failures, we first removed
subsequent failures from our studied dataset (§4).

Then, we measured the correlation between the ratio of first fail-
ures to all builds (which now only included first failures and passing
builds) and each studied build feature in each studied project. For
each value of a build feature in a project, we measured the ratio

A Cost-efficient Approach to Building in Continuous Integration ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Features studied for correlation with first failures.

Build features

Feature Short Description

src_churn (SC) The number of changed source lines since
the last build.

file_churn (FC) The number of changed source files since
the last build.

test_churn (TC) The number of changed test lines since the
last build.

num_commit (NC) The number of commits since the last build.
Project_performance_short
(PS)

The proportion of passing builds in the re-
cent five builds.

Project_performance_long
(PL)

The proportion of passing builds in the
whole previous builds.

Time_frequency (TF) The time gap (hour) since the last build.
Failure_Distance (FD) The number of builds since the last failing

build.
Week_day (WD) The weekday [0, 6] (0 being Monday) of the

build.
Day_time (DT) The time of day [0, 23] of the build.

Project features

Feature Short Description

Team_size (TS) The median number of developers over the
project’s CI usage history.

Project_size (PS) The median number of executable produc-
tion source lines of code in the repository
over the project’s CI usage history.

Project_age (PA) The time duration between the first build
and the last build for that project.

Test_density (TD) The median number of lines in test cases
per 1000 executable production source lines
over the project’s CI usage history.

of first failures to all builds that have that value for that feature in
the project. For continuous features, such as src_churn, we use the
Pearson correlation coefficient as effect size and its corresponding
p-value for the significance test. For categorical variables, such as
week_day, we measure effect size using Cramér’s V and we use
Pearson’s X2 for the statistical significance test.

Project features. Project features will be useful to train our approach
with past builds from other software projects. When no (or few) past
builds are available for a software project, we could use past builds
from different software projects to train our predictor. This situation
is known in machine learning as the cold-start problem [71]. In
such cases, our predictor will use project features to learn how
representative past builds from other projects are for the project
for which not enough past builds existed.

As we did to study build features, we also removed subsequent

failures to study project features. Then, we measured the correla-
tion across projects between the value of each project feature and
the project’s ratio of first failures to all builds. Since all features
were continuous, we applied Pearson’s correlation coefficient and
decided statistical significance for p < 0.05.

Results. We report the results of our correlation analysis for build
and project features.

Build features

SC 73.54% FC 77.43% TC 50.60% NC 58.70% PS 13.65% PL 23.12% TF 19.22% FD 11.42%

Co
rr

el
at

io
n

co
ef

fic
ie

nt

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4: Correlation between build-features and ratio of

first failures. Four build features (SC, FC, TC, NC) had a

statistically significant correlation for more than 50% of

projects.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

PS 0.0036 TD 0.0096 PA 0.0134 TS 0.316

Co
rr

el
at

io
n

co
ef

fic
ie

nt

Project features

Figure 5: Correlation between project features and ratio of

first failures. The correlationwas statistically significant for

three project features: PS, TD, PA.

Build features.We show in Figure 4 the correlation between different
build features and the ratio of first failures. Each box in the box plot
represents the distribution of correlation coefficients between a
feature (see Table 1) and the ratio of first failures, for all the projects
for which that feature’s correlation was statistically significant
(p < 0.05).We report the percentage of projects for which a feature’s
correlation was statistically significant in its label in the X axis.

We observe that different build features were differently related
to first failures For example, PS (project_performance_short) had a
median correlation of -0.94, which means that the build was more
likely to pass when there are more passing builds in its last five
builds and it has a strong correlation. However, this correlation was
only statistically significant in 13.65% of projects.

For the design of our technique, we will train on the features
that had a strong correlation with the ratio of first failures and their
results were statistically significant in at least 50% of projects. Four
features had these characteristics, the numbers of: changed lines
(SC), changed files (FC), changed test lines (TC), and commits since
the last build (NC).

A clear implication of these build features being related to first

failures is that, as changes accumulate in code —measured as any of
these four build features — without a failing build being observed,
the likelihood of the next build to fail becomes increasingly high.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Xianhao Jin and Francisco Servant

For the two categorical features (WD and DT), the results are statis-
tically significant in only 10.36% and 12.32% of all projects, and their
corresponding mean values of Cramér’s V are 0.1308 and 0.2483.

Another interesting observation is that most of the build features
that did not show strong statistical correlation with first failures are
those that intuitively would be strongly correlated with subsequent

failures instead. That is, subsequent failures happen after a particu-
larly short number (zero) of failing builds (FD), after a particularly
low proportion of passing to failing builds (PS, PL), and probably
a particularly short time after another build (TF). Intuitively, first
failures would not particularly have any of these characteristics.

Project features. We use a bar chart to show each project feature
and its corresponding correlation coefficient. The value following
the name of each project feature represents its corresponding p-
value. We found three project features for which first failures were
more prevalent, i.e., for which the project feature increased and its
difference is statistically significant (Figure 5): test density (TD),
project size (PS), and project age in CI (PA). These are the features
that we will use to design our technique to train across projects.

In simpler words, we observed that our studied projects had a
larger ratio of first failures when they had larger test cases, more
lines of code, or had been using CI for longer. This could mean that,
as software projects mature, more bugs affect their builds and/or
they get better at catching them. We posit that our observation
is likely a combination of both phenomena — intuitively, larger
projects have more points of failure and larger test suites are better
at catching problems. Still, to understand the underlying causes of
our observation in depth, further research would be necessary.

7 EXPERIMENT 1: EVALUATING

BUILD-FAILURE PREDICTION

RQ4 & RQ5: How effective is SmartBuildSkip predicting

first failures and all failures? In our second empirical study,
we discovered features that predict first failures (§6). Next, we use
them in SmartBuildSkip to evaluate it.

We evaluate SmartBuildSkip in two experiments that comple-
ment each other. First, we evaluate its effectiveness for predicting
build failures (§7), and then we evaluate the cost reduction that its
predictions provide in practice (§8).

Our first experiment (§7) allows us to compare the effective-
ness of SmartBuildSkip with that of existing build-prediction
techniques (e.g., [23, 43, 73]) in the scenario in which they were
originally proposed and evaluated: a scenario in which the infor-
mation about previous builds is always known — ignoring that it
would not be available if a previous build was skipped. Automatic
build prediction in such scenario can be useful to give developers
more confidence about their code changes, e.g., [23] — even if they
did not skip builds.

Our second experiment (§8) allows us to evaluate how much
cost SmartBuildSkip would save in CI in our target scenario — a
practical scenario in which the outcome of builds that were skipped
is unknown.

Research Method. We evaluate the prediction effectiveness of
SmartBuildSkip in comparison to the state-of-the-art build-prediction

technique: HW17 [23]. To better understand the benefit of Smart-
BuildSkip’s two-stage design (see §3), we separately evaluate pre-
dictions for first failures and all failures. We evaluate both tech-
niques over our dataset described in §4, and we measure their pre-
diction effectiveness using precision, recall, and F1 score. We tested
our results for statistical significance with a two-tailed Wilcoxon
test, and decided statistical significance for p < 0.05.

State-of-the-art Build-prediction Technique: HW17. To provide a
point of reference for this evaluation, we replicated the state-of-the-
art build prediction technique: HW17 [23]. We use the acronym
HW17 to refer to it — the first letter of the authors’ last names and
its publication date — since the authors did not assign it a specific
name. To the extent of our knowledge, HW17 is the existing build
prediction technique that provided the highest precision and recall.

HW17 predicts build outcomes with a random-forest machine-
learning algorithm, informed by a collection of 16 features about
the current build, 4 features about the previous build, and 8 features
generated from analyzing build logs. In contrast, SmartBuildSkip
requires only 4 current-build features, no previous-build features,
and 3 project features (§6). Only a few features are considered
by both HW17 and SmartBuildSkip: SC, FC, and TC (see their
descriptions in §6). Hassan and Wang found these features to be
correlated with all failures [23], and we found them to be correlated
with first failures (see §6).

Our proposed approach SmartBuildSkip provides two main
strengths over HW17 for saving cost in continuous integration:
(1) SmartBuildSkip runs predictions only for first failures, and
determines that all subsequent builds fail until a pass is observed.
HW17 does not make such distinction, and runs predictions for
all builds. We posit that SmartBuildSkip’s strategy will be more
effective at predicting both first and subsequent failures (which we
evaluate in this experiment). (2) SmartBuildSkip predicts based
only on features describing the current build and the project, but
it does not rely on features about the previous build. HW17, like
the other existing build-prediction approaches, does rely on the
outcome of the previous build, among other features. We posit
that such choice would make HW17 much less effective in real-
world usage: whenever a previous build is skipped, its outcome
will be unknown, which would negatively impact HW17 but not
SmartBuildSkip (which we study in §8).

Predicting first failures vs. all failures. We evaluate the prediction of
first failures and all failures over two different datasets. For predict-
ing first failures, we removed subsequent failures from our dataset
and evaluated our studied techniques over it. For predicting all

failures, we evaluated our studied techniques over the dataset orig-
inally used to evaluate HW17 [23], which contains both first and
subsequent failures, i.e., all failures. The paper’s authors generously
shared this dataset with us and we applied to it the same curation
that we described in §4. Like our dataset, HW17’s is also obtained
from TravisTorrent [4] — HW17’s dataset is in fact a subset of ours.
HW17’s dataset includes only Java projects that use the Ant, Maven,
or Gradle build systems. In total, their dataset contains 37 projects.

This decision strengthens our experiment in two ways. (1) Per-
forming our evaluation for all failures over HW17’s dataset allows
us to make a fair comparison between HW17 and SmartBuildSkip.
HW17 relies on some pre-computed features about the preceding

A Cost-efficient Approach to Building in Continuous Integration ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

Pr
ec
isi
on

0%

10%

20%

30%

40%

50%

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

Re
ca
ll

0%

10%

20%

30%

40%

50%

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

F1
sc
or
e

0%

10%

20%

30%

40%

50%

Figure 6: Performance comparison on predicting first failures

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

Pr
ec
isi
on

0%

20%

40%

60%

80%

100%

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

Re
ca
ll

0%

20%

40%

60%

80%

100%

Predictors
SBS-Within HW17-Within SBS-Cross HW17-Cross

F1
sc
or
e

0%

20%

40%

60%

80%

100%

Figure 7: Performance comparison on predicting all failures

build (e.g., cluster_id) that are only available in their dataset — not
in TravisTorrent. We decided to use HW17’s dataset so that it could
benefit from this pre-computed information. (2) We could still eval-
uate the prediction of first failures over our larger dataset, since
HW17 does not benefit from its pre-computed features when there
are only first failures, i.e., the preceding build to a failing build is
always a passing build — all of which get the same cluster_id value.

Cross-validation. We perform 8-fold cross validation, also to study
the same conditions in which HW17 was evaluated. Thus, we ran-
domly divided our dataset (§4) into 8 subsets of builds, i.e., folds,
iteratively using one of them as our test set and the remaining ones
as our training set, until we have used every fold as test set.

We evaluated the Within variations of our studied techniques
applying cross-validation individually for each software project —
randomly dividing the set of builds of the same software project
into subsets. We evaluated the Cross variations of our studied
techniques applying cross-validation across software projects —
randomly dividing the set of projects in our dataset into subsets
of projects, and using all the builds within a project for testing or
training, accordingly. In both cases, we report the results of our
evaluation metrics per software project.

Independent Variable: Technique. We evaluate four different ap-
proaches: our proposed approaches andHW17 [23], in theirWithin
and Cross variants.
SmartBuildSkip-Within: Our proposed approach described

in §3, trained in the same software project, using the predict-
ing build features that we discovered in §6.

SmartBuildSkip-Cross: Our proposed approach described in
§3, trained in other software projects, using the predicting
build features and project features that we discovered in §6.

HW17-Within: The state-of-the-art build predictor, trained in
the same software project.

HW17-Cross: The state-of-the-art build predictor, trained in dif-
ferent software projects.

Dependent Variables. We used three metrics to evaluate our studied
techniques: precision, recall, and F1 score. We calculated the value
of these metrics for each studied software project, first for the set
of first failures, and then for the set of all failures.

We measured precision as the number of correctly predicted
build failures divided by the number of builds that the technique
predicted as build failures. We measured recall as the number of
correctly predicted build failures divided by the number of actual
build failures. We measured F1 score as the harmonic mean of
precision and recall.

Results.We plot the results of this experiment in Figure 6 for the
prediction of first failures, and in Figure 7 for the prediction of all
failures. The boxes in these box plots for each dependent variable
represent its distribution of values for all the studied projects. We
discuss our observed differences in results in terms of absolute
percentage point differences over the median value of each metric
across projects.

Predicting first failures. SmartBuildSkip improved HW17’s median
precision by 3% for its Within approach and by 9% for its Cross
approach. SmartBuildSkip also improved HW17’s median recall
by 4% for its Within approach and by 7% for its Cross approach.
These differences were statistically significant (p < 0.05). We posit
that SmartBuildSkip-Cross provided an even higher improve-
ment because its training set was much larger — encompassing
multiple projects — and because build features likely vary little
from project to project. These findings validate our hypothesis in
§2 that separately predicting first failures is more effective than
training a predictor based on features from all failures.

Predicting all failures. SmartBuildSkip improved HW17’s median
precision by 16% for its Within approach and was 9% worse for
its Cross approach. It also improved HW17’s median recall by 28%
for its Within approach and by 68% for its Cross approach. These
differences were statistically significant (p < 0.05). We posit that

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Xianhao Jin and Francisco Servant

SmartBuildSkip’s precision and recall are now much higher than
HW17’s because it is much better at predicting subsequent failures.
We also observed that both techniques generally improved both
their precision and recall. We believe that this is due to the increase
in the number of failing builds in the dataset — after adding subse-

quent failures), allowing all techniques to learn them better. This
is particularly acute for SmartBuildSkip’s Cross variants, which
became much more inclined to predict build failures after being
trained with much more data (across projects), which dramatically
increased its recall, but reduced its precision. These findings also
validate our hypothesis in §2 that choosing to always build after a
failure is a highly successful strategy to predict subsequent failures.

8 EXPERIMENT 2: EVALUATING CI COST

REDUCTION

RQ6 & RQ7: How many resources, i.e. builds, will our ap-

proaches save?What is the value trade-off for such resource

savings? After finding that SmartBuildSkip improves the preci-
sion and recall of the state-of-the-art build predictor, we measure
the cost reduction that it would provide in practice.

Research Method.We now simulate the more realistic scenario
in which the builds that are skipped are not available for training.
We use the same setting as in §7, with one change. Now, when a
predictor predicts the upcoming build as a pass, we skip the build,
and accumulate the value of the build-level features for the next
coming build. We only update the information connected to the last
build when the predictor actually decides to build. In this context,
we measure four metrics for each evaluated technique: how many
builds it saves, how many failing builds are observed immediately
(and how many with a delay), the delay length of delayed failing
builds, and a new metric to measure the balance between failing
build observation delay and build execution saving.

Independent Variable: Technique. We evaluate the same four predic-
tors as in Experiment 1, in addition to a new collection of techniques
that we call rule-of-thumb techniques. In the spirit of cost-saving,
we propose this additional collection of techniques because of their
low adoption cost. These rule-of-thumb techniques are based on
the individual build features that we observed in §6. They sim-
ply decide to skip builds when the given feature value is below
a certain threshold. We propose these techniques as a potentially
“good-enough” alternative for software teams that do not have the
resources to implement and adopt SmartBuildSkip, or for them to
use in the time period while they are implementing it. Finally, we
also include a “Perfect” technique that would skip all passing builds
and run all failing builds — as a reference for how many builds
could be desirably skipped.

Independent Variable: Prediction sensitivity. Our simple techniques
need a threshold to be applied, i.e., they are defined as “predict
build failures when the feature value is over X”. In a similar manner,
SmartBuildSkip can be also configured for different thresholds
of prediction sensitivity. Thus, we also evaluate these techniques
for multiple thresholds of sensitivity. Only when the possibility
predicted by the classifier for the coming build to become a failure is
smaller than the threshold, we will predict the build as a pass, which
means the smaller the threshold is, the easier we are going to predict

builds as failing. Finally, these varied thresholds and prediction
sensitivities will allow us to learn different trade-offs that could be
achieved in terms of saving cost in CI — skipping builds — without
losing too much value — without delaying too many build failures.
We evaluated 50 different thresholds (values 1–50), which meant:
absolute value for the “rule-of-thumb” techniques, and predicted
likelihood (in percentage) of the build to fail for SmartBuildSkip.

Studied dataset. Since this experiment is focused on predicting
all builds, we also use the dataset in which HW17 was originally
evaluated (§7).

Dependent Variables.We measured four metrics in this evaluation:
Recall, Failing-build Delay, Saved Builds, and Saving Efficiency.
Recall is the proportion of failing builds that are correctly pre-
dicted and executed, among all failing builds. For each failing build
that was incorrectly predicted and skipped, we also measured its
Failing-build Delay, as the number of builds that were skipped until
the predictor decided to run a build again — and then the failure
would be observed. We measured Saved Builds as the proportion
of builds that are skipped among all builds. Finally, we measured
Saving Efficiency as the harmonic mean of saved-builds and recall,
to understand their balance.

Results. We plot the results for our Experiment 2 in Figure 8.
This figure shows the median value for each metric across studied
projects. For Failing-build Delay, it’s the median across projects
of their median Failing-build Delay. The Y axis is the metric for
evaluation and each box contains every project’s result. The X axis
has different meanings for different techniques: the threshold for
rule-of-thumb techniques (e.g., threshold 5 for #src_files means that
<5 files were changed in that build), or the prediction sensitivity (in
percentage) for the predictors.

We make a few observations from our results. First, Smart-
BuildSkip-Within achieves the peak saving efficiency among all
techniques for its 2% sensitivity — saving 61% of all builds, execut-
ing 73% of the failing builds immediately, and the remaining ones
with a median 2-build delay. If a more conservative approach is
sought, SmartBuildSkip-Within’s 0% sensitivity would execute
80% of the failing builds (and the remaining ones with a 1-build
delay), while still saving 45% of all builds.

HW17 achieved the poorest saving efficiency. As we anticipated
in §2, HW17 predicted most builds to pass because it relied too
much on the status of the last build. It saved a large amount of
builds, but it also executed very few failing builds as a result.

Finally, our rule-of-thumb techniques provided acceptable re-
sults. Thus, a software team looking for a simple mechanism to save
effort by skipping builds in CI could simply skip those builds that,
for example, changed more than 30 lines — which is the highest
saving efficiency for #src-lines. In our experiments, this threshold
saved around 57% builds, executing 60% failing builds (and the re-
maining ones with an 8-build delay). While this trade-off may not
be the most ideal (certainly SmartBuildSkip provides much better
trade-offs), it has the advantage that it can be adopted by simply
informing developers to follow that rule.

Finally, if more conservative or more risky approaches are pre-
ferred, Figure 8 shows a wide variety of trade-offs that could be
achieved by different techniques and configurations.

A Cost-efficient Approach to Building in Continuous Integration ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50

Re
ca

ll

Perfect HW17-Within HW17-Cross SBS-Within SBS-Cross
commits # src files # src lines # test lines

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50

Sa
ve

d
bu

ild
s

Perfect HW17-Within HW17-Cross SBS-Within SBS-Cross
commits # src files # src lines # test lines

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50

Sa
vi

ng
Ef

fic
ie

nc
y

Perfect HW17-Within HW17-Cross SBS-Within SBS-Cross
commits # src files # src lines # test lines

0

5

10

15

20

25

30

35

0 10 20 30 40 50

Fa
ili

ng
-b

ui
ld

De
la

y

Perfect HW17-Within HW17-Cross SBS-Within SBS-Cross
commits # src files # src lines # test lines

Figure 8: Cost saved and value kept by evaluated techniques

9 DISCUSSION

Diverse Cost-saving Needs. Different developers will have dif-
ferent preferences in the trade-off between observing failing builds
early and saving build effort. Thus, we propose SmartBuildSkip
as a customizable solution, with an adjustable prediction sensi-
tivity. Some developers may value observing failing builds early
much more than saving cost (but still want to save some cost), e.g.,
developers at large companies that have been using CI for some
time and are exploring ways to reduce its cost (like Facebook [37],
Microsoft [24], or Google [12]). These developers could configure
SmartBuildSkip in its most conservative sensitivity (0) and save
the cost of 30% of their builds while only introducing a 1-build delay
in 15% of their build failures.

In contrast, other developers may be looking for a way to reduce
CI’s high-cost barrier [70] to adopt it, even if it means observ-
ing build failures less quickly. These developers could configure
SmartBuildSkip with a more liberal sensitivity (2) and save the
cost of 61% of their builds and still observe 73% failing builds with
no delay (and the remaining 27% with a 2-build delay). In this
scenario, SmartBuildSkip dramatically lowers the cost of CI for
non-adopters, letting them still get a strong value from it — partic-
ularly considering that non-adopters currently do not benefit from
CI at all. Furthermore, as developers’ budgets increase, they could
also adapt the sensitivity of SmartBuildSkip over time to build
more and observe failures more quickly.

The Impact of Delayed Failing Builds. Our approach reduces
the cost of CI, but it also reduces its value — it delays the observation
of some build failures. Some existing techniques target developers
who cannot afford a single delayed failing build — by skipping
only tests [59] or commits [2] that are guaranteed to pass, i.e., tests
for other modules and non-code changes. In exchange for such
guarantee, this strategy is limited in how much cost it can save —
the number of guaranteed-pass tests and commits.

Our proposed technique targets developers for whom some de-
lay in failure observation is acceptable — as do existing techniques
based on test selection. Such techniques, which introduce failure
observation delays, are valued and adopted by many large soft-
ware companies, e.g., Google [11], Microsoft [24], or Facebook [37].
We argue that, for many developers, the cost savings provided by
SmartBuildSkip overcome the introduced delay in failure obser-
vation — particularly for SmartBuildSkip’s most conservative sen-
sitivities, which produce a delay of one or two builds. For context,
Herzig et al.’s approach [24] (deployed at Microsoft) introduced a
delay of 1–3 builds. Ultimately, though, we believe that different
developers would prefer different cost-saving trade-offs, which is
why we made SmartBuildSkip customizable.

Other Purposes of CI. The main reason for developers to use CI
is to catch bugs earlier [25], but they also use it to: have a common

build environment, make integrations easier, enforce a specific work-
flow, simplify testing across multiple platforms, be less worried about
breaking builds, deploy more often, and have faster iterations, [25, 26].
Most (the first four) of these purposes are achieved as soon as CI is
adopted, so we do not expect them to be impacted by introducing
a cost-saving technique like SmartBuildSkip. However, the last
three purposes (and others like safety-checking pull requests) may

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Xianhao Jin and Francisco Servant

be impacted, since they benefit from observing build passes. This
applies to both our and existing techniques that skip tests or builds.

Still, after adopting a cost-saving technique, developers remain
in control of their build frequency. They can always build more fre-
quently by making SmartBuildSkip’s prediction sensitivity more
conservative, or by simply triggering additional builds on top of
the ones that SmartBuildSkip triggers.

Furthermore, SmartBuildSkip provides an additional benefit
over existing test-selection-based techniques for purposes that rely
on build observations. Test-selection techniques may give a false
sense of confidence [45] when a build that should have failed instead
passes because some of its failing tests were skipped.

When SmartBuildSkip predicts a build that should have failed
as passing, it skips it (it does not show it as passing), which provides
more transparency about the unknown status of the build — until
it eventually fails in a later build.

10 THREATS TO VALIDITY

Construct Validity. We use metrics as proxies to represent the
value — early observation of build failures — and cost — build
execution — in CI. However, these are metrics that developers
have reported as describing the value and cost of CI, e.g., [10, 15,
26, 43], and are metrics that other existing approaches for saving
cost in CI have used, e.g., [2, 37]. Herzig et al. [24] assign specific
dollar amounts to each test case that is saved and each failure
observation that is delayed. We avoid using their numbers, since
they were calculated at Microsoft and will probably be different at
other companies.

Internal Validity. To guard internal validity, we carefully tested
our evaluation tools on subsets of our dataset while developing
them. Our analysis could also be influenced by incorrect informa-
tion in our analyzed dataset. For this, we selected a popular dataset
that has been analyzed in other studies and we filtered outliers and
toy projects out of it. Our results may also be affected by flaky tests
causing spurious failing builds. However, CI systems are expected
to function even in the presence of flaky tests, since most compa-
nies do not consider it economically viable to remove them, e.g.,
[37, 40].

Another threat could be the risk of over-fitting in our empirical
study 2 (§6), since we performed it over our complete data set
— since we aimed to increase the generalizability of our observed
correlated features. To address the over-fitting risk, we repeated our
study on the chronologically earlier half of data for build features
and a half of projects for project features through stratified random
sampling [9] on number of builds. The features selected with our
original criteria remained the same (correlation coefficients — SC:
0.68, FC: 0.91, TC: 0.75, NC: 0.73, TD: 0.16, PS: 0.22, PA: 0.18).

Also, our usage of cross-validation may result in placing future
builds in the training sample. An alternative approach would have
been to use chronological training and testing, e.g., [5, 56, 63]. How-
ever, our goal was to compare SmartBuildSkip with HW17 in the
scenario in which it was originally proposed and evaluated, i.e.,
using cross-validation. Nevertheless, we believe that SmartBuild-
Skip would provide similar precision and recall in a chronological
experiment, since it uses build features that likely do not vary much
over time, i.e.,we believe that SC, FC, TC, and NC do not necessarily

vary significantly as projects age. Furthermore, SmartBuildSkip’s
cross-project variant is not affected by this threat, since it was
trained in different projects than it was tested.

Finally, we also increase our internal validity by validating the
hypothesis that influence our proposed technique via studies 1 (§5)
and 2 (§6).

External Validity. To increase external validity, we selected the
popular dataset Travis CI, which has been analyzed by many other
researchworks. The projects we chosewere all Java or Ruby projects,
because there are no projects with other programming languages
in the data set. Although these two programming languages are
popular, different CI habits in other languages may provide slightly
different results to the ones in this study. Finally, our cost-saving
technique may not be suitable for software projects that cannot
afford a single delay in observing failing builds. We target projects
that can afford some delay in exchange for the cost savings, as do
other techniques that skip builds, e.g., [2] or tests, e.g., [37].

11 RELATEDWORK

Empirical Studies of CI and its Cost. Multiple researchers fo-
cused on understanding the practice of CI, studying both practition-
ers e.g., [26] and software repositories [68]. Vasilescu et al. studied
CI as a tool in social coding [67], and later studied its impact on soft-
ware quality and productivity [68]. Zhao et al. studied the impact of
CI in other development practices, like bug-fixing and testing [79].
Stahl et al. [62] and Hilton et al. [26] studied the benefits and costs
of using CI, and the trade-offs between them [25]. Lepannen et al.

similarly studied the costs and benefits of continuous delivery [34].
Felidré et al. [13] studied the adherence of projects to the original
CI rules [15]. Other recent studies focused on the difficulties [45]
and pain points [70] of CI.

The high cost of running builds is highlighted by many empirical
studies as an important problem in CI [24–26, 45, 70] — which
reaches millions of dollars in large companies, e.g., at Google [26]
and Microsoft [24].

Approaches to Reduce the Cost of CI.A popular effort to reduce
the cost of CI focuses on understanding what causes long build
durations e.g., [19, 66]. Thus, most of the approaches that reduce
the cost of CI aim at making builds faster by running fewer test
cases on each build. Some approaches use historical test failures
to decide which tests to run [12, 24] Others run tests with a small
distance with the code changes [39] or skip those testing unchanged
modules [59]. Recently, Machalica et al. predicted test case failures
using a machine learning classifier [37]. These techniques are based
on the broader field of regression test selection (RTS) e.g., [20, 49,
50, 74, 75, 78, 80]. While these techniques focus on making every
build cheaper, our work addresses the cost of CI differently: by
reducing the total number of builds that get executed. A related
recent technique saves cost in CI by not building when builds
only include non-code changes [1, 2]. Our technique predicts build
outcomes for any kind of changes (code and non-code). Thus, our
work complements existing techniques to reduce cost in CI, and
could potentially be applied in addition to them.

A related effort for improving CI aims at speeding up its feed-
back by prioritizing its tasks. The most common approach in this

A Cost-efficient Approach to Building in Continuous Integration ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

direction is to apply test case prioritization (TCP) techniques e.g.,
[11, 12, 36, 38, 42, 51] so that builds fail faster. Another similar
approach achieves faster feedback by prioritizing builds instead
of tests [35]. In contrast, our work focuses on saving cost in CI
by skipping tasks instead of prioritizing them. Prioritization-based
techniques increase feedback speed but do not focus on saving cost,
i.e., all builds still get executed, and all passing tests get executed if
no test failure is observed.

Finally, other complementary efforts to reduce build duration
have targeted speeding up the compilation process e.g., [7] or the
initiation of testing machines e.g., [17].

Characterizing Failing Builds.Multiple studies investigated the
reasons why builds fail. Some studies [41, 69] found that the most
common build failures were compilation [77], unit test, static anal-
ysis [76], and server errors. Paixão et al. [44] studied the interplay
between non-functioal requirements and failing builds. Other stud-
ies found factors that contribute to build failures: architectural
dependencies [6, 52] and other more specific factors, such as the
stakeholder role, the type of work item and build [32], or the pro-
gramming language [3]. Other less obvious factors that could cause
build failures are build environment changes or flaky tests [47].
Rausch et al. [47] also found that build failures tend to occur con-
secutively, which Gallaba et al. [16] describe as “persistent build
breaks”. These observations inform our hypothesis that subsequent
build failures would be numerous and easy to anticipate.

Other studies found change characteristics that correlate with
failing builds, such as: number of commits, code churn [27, 47],
number of changed files, build tool [27], and statistics on the last
build and the history of the committer [43]. In our study, we separate
failing builds into first failures and subsequent failures. We found
that first failures are predicted by some of the factors that predict all
builds (line, file, and test churn, and number of commits), but also
by factors that were not found to correlate with all builds (project
size, age, and test density).

Finally, other studies investigated the characteristics of build
failures outside the CI context [22, 46, 65]

Predicting Failing Builds. Some works aimed at predicting build
outcomes in industrial settings where continuous integration was
not yet adopted. These techniques mostly approached this problem
using machine learning classifiers, e.g., measuring social and tech-
nical factors and using decision trees [21]; applying social network
analysis and measuring socio-technical factors [33, 72]; and using
code metrics on incremental decision trees [14].

In the continuous integration context, Ni and Li [43] predict
build outcomes using cascade classifiers measuring statistics about
the last build and the committer of the current build. Xie and Li
[73] use a semi-supervised method over change metrics and the
last build’s outcome. Hassan and Wang [23] use a predictor over
the last build’s status and type. Since all these predictors rely on
the outcome of the last build to be known, their prediction power
may be limited in a cost-saving context, where the last build means
the last build that was executed. In contrast to these predictors,
SmartBuildSkip is not affected by how stale the last build status
is, since it does not rely on it for its prediction.

12 CONCLUSIONS AND FUTUREWORK

In this article, we proposed and evaluated SmartBuildSkip, a novel
framework for saving cost in CI by skipping builds that it predicts
will pass. Our design of SmartBuildSkip is based on two main
hypothesis: that build passes are numerous and that many fail-
ing builds happen consecutively. We studied these hypotheses and
found evidence to support them. Thus, SmartBuildSkip works in
two phases: first it runs a machine learning predictor to decide if a
build will pass — and skips it — or will fail — and executes it. When-
ever it observes a failing build, it determines that all subsequent
builds will fail and keeps building until it observes a pass again —
and starts predicting again.

With this strategy, SmartBuildSkip improved the precision
and recall of the state-of-the-art build predictor (HW17) and cost
savings with various trade-offs, since we made it customizable to
address the needs of diverse populations of developers. We high-
light two specific configurations that we posit will be popular: the
most conservative one, which saves 30% builds and only delays
the observation of 15% failing builds by 1 build; and a more bal-
anced one that saves 61% of all builds and delays 27% failing builds
by 2 builds. Nevertheless, SmartBuildSkip provides many other
trade-offs that could be desirable in different environments. Smart-
BuildSkip provides a novel strategy that complements existing
techniques to cost saving in CI that focus on skipping test cases or
builds with non-code changes.

In the future, we will work on extending SmartBuildSkip’s
algorithm with static analysis techniques to predict build failures
based on characteristics of the contents of their code changes. We
will also explore adding prediction features based on the historical
properties of the changed modules between builds, such as their
code-change history [53–55, 57, 58]. Currently, SmartBuildSkip
benefits from statistical properties of builds. This future approach
would focus on taking advantage of their structural properties.

13 REPLICATION

We include a replication package for our paper [30].

REFERENCES

[1] Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. 2020. AMachine Learning
Approach to Improve the Detection of CI Skip Commits. IEEE Transactions on

Software Engineering (2020).
[2] R. Abdalkareem, S. Mujahid, E. Shihab, and J. Rilling. 2019. Which Commits

Can Be CI Skipped? IEEE Transactions on Software Engineering (2019), 1–1.
https://doi.org/10.1109/TSE.2019.2897300

[3] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, my tests broke
the build: An explorative analysis of Travis CI with GitHub. In Mining Software

Repositories (MSR), 2017 IEEE/ACM 14th International Conference on. IEEE, 356–
367.

[4] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Travistorrent: Synthe-
sizing travis ci and github for full-stack research on continuous integration. In
Mining Software Repositories (MSR), 2017 IEEE/ACM 14th International Conference

on. IEEE, 447–450.
[5] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim.

2008. Duplicate bug reports considered harmful. . . really?. In 2008 IEEE Interna-

tional Conference on Software Maintenance. IEEE, 337–345.
[6] Marcelo Cataldo and James D Herbsleb. 2011. Factors leading to integration fail-

ures in global feature-oriented development: an empirical analysis. In Proceedings

of the 33rd International Conference on Software Engineering. ACM, 161–170.
[7] Ahmet Celik, Alex Knaust, Aleksandar Milicevic, and Milos Gligoric. 2016. Build

system with lazy retrieval for Java projects. In Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
643–654.

https://doi.org/10.1109/TSE.2019.2897300

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Xianhao Jin and Francisco Servant

[8] Cloudbee. 2019. Jenkins Enterprise by CloudBees 14.5 User Guide - Skip Next
Build Plugin. https://docs.huihoo.com/jenkins/enterprise/14/user-guide-14.5/
skip.html. [Online; accessed 27-April-2019].

[9] William Gemmell Cochran. 1977. Sampling techniques-3. (1977).
[10] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:

improving software quality and reducing risk. Pearson Education.
[11] Sebastian Elbaum, Alexey G Malishevsky, and Gregg Rothermel. 2002. Test

case prioritization: A family of empirical studies. IEEE transactions on software

engineering 28, 2 (2002), 159–182.
[12] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-

proving regression testing in continuous integration development environments.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering. ACM, 235–245.
[13] Wagner Felidré, Leonardo Furtado, Daniel Alencar Da Costa, Bruno Cartaxo,

and Gustavo Pinto. 2019. Continuous Integration Theater. In Proceedings of the

13th ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement. 10.
[14] Jacqui Finlay, Russel Pears, and Andy M Connor. 2014. Data stream mining for

predicting software build outcomes using source code metrics. Information and

Software Technology 56, 2 (2014), 183–198.
[15] Martin Fowler and Matthew Foemmel. 2006. Continuous integration. Thought-

Works) http://www. thoughtworks. com/Continuous Integration. pdf 122 (2006),
14.

[16] Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh. 2018.
Noise and heterogeneity in historical build data: an empirical study of Travis
CI. In Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering. ACM, 87–97.
[17] Alessio Gambi, Zabolotnyi Rostyslav, and Schahram Dustdar. 2015. Improving

cloud-based continuous integration environments. In Proceedings of the 37th

International Conference on Software Engineering-Volume 2. IEEE Press, 797–798.
[18] Aakash Gautam, Saket Vishwasrao, and Francisco Servant. 2017. An empirical

study of activity, popularity, size, testing, and stability in continuous integration.
In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories

(MSR). IEEE, 495–498.
[19] Taher Ahmed Ghaleb, Daniel Alencar da Costa, and Ying Zou. 2019. An empirical

study of the long duration of continuous integration builds. Empirical Software

Engineering (2019), 1–38.
[20] Milos Gligoric, Lamyaa Eloussi, andDarkoMarinov. 2015. Practical regression test

selection with dynamic file dependencies. In Proceedings of the 2015 International

Symposium on Software Testing and Analysis. ACM, 211–222.
[21] Ahmed E Hassan and Ken Zhang. 2006. Using decision trees to predict the

certification result of a build. In Automated Software Engineering, 2006. ASE’06.

21st IEEE/ACM International Conference on. IEEE, 189–198.
[22] Foyzul Hassan, Shaikh Mostafa, Edmund SL Lam, and Xiaoyin Wang. 2017. Au-

tomatic building of java projects in software repositories: A study on feasibility
and challenges. In 2017 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM). IEEE, 38–47.
[23] Foyzul Hassan and Xiaoyin Wang. 2017. Change-aware build prediction model

for stall avoidance in continuous integration. In Proceedings of the 11th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement.
IEEE Press, 157–162.

[24] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015.
The art of testing less without sacrificing quality. In Proceedings of the 37th

International Conference on Software Engineering-Volume 1. IEEE Press, 483–493.
[25] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny

Dig. 2017. Trade-offs in continuous integration: assurance, security, and flexi-
bility. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering. ACM, 197–207.
[26] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.

2016. Usage, costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-

ware Engineering. ACM, 426–437.
[27] Md Rakibul Islam and Minhaz F Zibran. 2017. Insights into continuous integra-

tion build failures. In Mining Software Repositories (MSR), 2017 IEEE/ACM 14th

International Conference on. IEEE, 467–470.
[28] Romit Jain, Saket Kumar Singh, and Bharavi Mishra. 2019. A Brief Study on

Build Failures in Continuous Integration: Causation and Effect. In Progress in

Advanced Computing and Intelligent Engineering. Springer, 17–27.
[29] Jenkins. 2019. CI Skip Plugin. https://plugins.jenkins.io/ci-skip. [Online; accessed

27-April-2019].
[30] Xianhao Jin and Francisco Servant. 2019. When Should I Build? A Collection of

Cost- efficient Approaches to Running Builds in Continuous Integration. https:
//doi.org/10.5281/zenodo.2667377

[31] John O’Duinn . 2013. The financial cost of a checkin. https://oduinn.com/2013/12/
13/the-financial-cost-of-a-checkin-part-2/ [Online; accessed 25-January-2019].

[32] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. 2014. Why do automated
builds break? an empirical study. In Software Maintenance and Evolution (ICSME),

2014 IEEE International Conference on. IEEE, 41–50.

[33] Irwin Kwan, Adrian Schroter, and Daniela Damian. 2011. Does socio-technical
congruence have an effect on software build success? a study of coordination
in a software project. IEEE Transactions on Software Engineering 37, 3 (2011),
307–324.

[34] Marko Leppänen, Simo Mäkinen, Max Pagels, Veli-Pekka Eloranta, Juha Itkonen,
Mika V Mäntylä, and Tomi Männistö. 2015. The highways and country roads to
continuous deployment. Ieee software 32, 2 (2015), 64–72.

[35] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Redefining priori-
tization: continuous prioritization for continuous integration. In 2018 IEEE/ACM

40th International Conference on Software Engineering (ICSE). IEEE, 688–698.
[36] Qi Luo, Kevin Moran, Denys Poshyvanyk, and Massimiliano Di Penta. 2018.

Assessing test case prioritization on real faults and mutants. In 2018 IEEE In-

ternational Conference on Software Maintenance and Evolution (ICSME). IEEE,
240–251.

[37] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive test selection. In Proceedings of the 41st International Conference on

Software Engineering: Software Engineering in Practice. IEEE Press, 91–100.
[38] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test case prioritization for

continuous regression testing: An industrial case study. In 2013 IEEE International

Conference on Software Maintenance. IEEE, 540–543.
[39] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-

borski, and John Micco. 2017. Taming google-scale continuous testing. In Pro-

ceedings of the 39th International Conference on Software Engineering: Software

Engineering in Practice Track. IEEE Press, 233–242.
[40] John Micco. 2017. The State of Continuous Integration Testing At Google.
[41] Ade Miller. 2008. A hundred days of continuous integration. In Agile 2008

Conference. IEEE, 289–293.
[42] Shaikh Mostafa, Xiaoyin Wang, and Tao Xie. 2017. Perfranker: Prioritization of

performance regression tests for collection-intensive software. In Proceedings of

the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 23–34.

[43] Ansong Ni and Ming Li. 2017. Cost-effective build outcome prediction using
cascaded classifiers. In Mining Software Repositories (MSR), 2017 IEEE/ACM 14th

International Conference on. IEEE, 455–458.
[44] Klérisson VR Paixão, Crícia Z Felício, Fernanda M Delfim, and Marcelo de A Maia.

2017. On the interplay between non-functional requirements and builds on
continuous integration. In Proceedings of the 14th International Conference on

Mining Software Repositories. IEEE Press, 479–482.
[45] Gustavo Pinto, Marcel Rebouças, and Fernando Castor. 2017. Inadequate testing,

time pressure, and (over) confidence: a tale of continuous integration users. In
Proceedings of the 10th International Workshop on Cooperative and Human Aspects

of Software Engineering. IEEE Press, 74–77.
[46] Noam Rabbani, Michael S Harvey, Sadnan Saquif, Keheliya Gallaba, and Shane

McIntosh. 2018. Revisiting" Programmers’ Build Errors" in the Visual Studio
Context. In 2018 IEEE/ACM 15th International Conference on Mining Software

Repositories (MSR). IEEE, 98–101.
[47] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017.

An empirical analysis of build failures in the continuous integration workflows
of Java-based open-source software. In Proceedings of the 14th International Con-

ference on Mining Software Repositories. IEEE Press, 345–355.
[48] Marcel Rebouças, Renato O Santos, Gustavo Pinto, and Fernando Castor. 2017.

How does contributors’ involvement influence the build status of an open-source
software project?. In Proceedings of the 14th International Conference on Mining

Software Repositories. IEEE Press, 475–478.
[49] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing regression test selec-

tion techniques. IEEE Transactions on software engineering 22, 8 (1996), 529–551.
[50] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test

selection technique. ACM Transactions on Software Engineering and Methodology

(TOSEM) 6, 2 (1997), 173–210.
[51] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.

2001. Prioritizing test cases for regression testing. IEEE Transactions on software

engineering 27, 10 (2001), 929–948.
[52] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and

Robert Bowdidge. 2014. Programmers’ build errors: a case study (at google). In
Proceedings of the 36th International Conference on Software Engineering. ACM,
724–734.

[53] Francisco Servant. 2013. Supporting bug investigation using history analysis. In
2013 28th IEEE/ACM International Conference on Automated Software Engineering

(ASE). IEEE, 754–757.
[54] Francisco Servant and James A Jones. 2011. History slicing. In 2011 26th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2011). IEEE,
452–455.

[55] Francisco Servant and James A Jones. 2012. History slicing: assisting code-
evolution tasks. In Proceedings of the ACM SIGSOFT 20th International Symposium

on the Foundations of Software Engineering. 1–11.
[56] Francisco Servant and James A Jones. 2012. WhoseFault: Automatic Developer-

to-Fault Assignment through Fault Localization. In International Conference on

Software Engineering. 36–46.

https://docs.huihoo.com/jenkins/enterprise/14/user-guide-14.5/skip.html
https://docs.huihoo.com/jenkins/enterprise/14/user-guide-14.5/skip.html
https://plugins.jenkins.io/ci-skip
https://doi.org/10.5281/zenodo.2667377
https://doi.org/10.5281/zenodo.2667377
https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/
https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/

A Cost-efficient Approach to Building in Continuous Integration ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[57] Francisco Servant and James A Jones. 2013. Chronos: Visualizing slices of source-
code history. In 2013 First IEEE Working Conference on Software Visualization

(VISSOFT). IEEE, 1–4.
[58] Francisco Servant and James A Jones. 2017. Fuzzy fine-grained code-history

analysis. In 2017 IEEE/ACM 39th International Conference on Software Engineering

(ICSE). IEEE, 746–757.
[59] August Shi, Suresh Thummalapenta, Shuvendu K Lahiri, Nikolaj Bjorner, and

Jacek Czerwonka. 2017. Optimizing test placement for module-level regression
testing. In Proceedings of the 39th International Conference on Software Engineering.
IEEE Press, 689–699.

[60] Alankar Shrivastava, Vipin B Gupta, et al. 2011. Methods for the determination of
limit of detection and limit of quantitation of the analytical methods. Chronicles
of Young Scientists 2, 1 (2011), 21.

[61] Stack Overflow contributors. 2019. Skip travis build if an unimportant file
changed. https://stackoverflow.com/questions/48455623/skip-travis-build-if-
an-unimportant-file-changed [Online; accessed 21-February-2019].

[62] Daniel Ståhl and Jan Bosch. 2013. Experienced benefits of continuous integration
in industry software product development: A case study. In The 12th iasted

international conference on software engineering,(innsbruck, austria, 2013). 736–
743.

[63] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. Online defect predic-
tion for imbalanced data. In 2015 IEEE/ACM 37th IEEE International Conference

on Software Engineering, Vol. 2. IEEE, 99–108.
[64] Travis. 2019. Skipping a build. https://docs.travis-ci.com/user/customizing-the-

build/#skipping-a-build. [Online; accessed 27-April-2019].
[65] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco

Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again:
Can you compile that snapshot? Journal of Software: Evolution and Process 29, 4
(2017), e1838.

[66] Michele Tufano, Hitesh Sajnani, and Kim Herzig. 2019. Towards Predicting
the Impact of Software Changes on Building Activities. In 2019 IEEE/ACM 41st

International Conference on Software Engineering: New Ideas and Emerging Results

(ICSE-NIER) (ICSE ’19). 4.
[67] Bogdan Vasilescu, Stef Van Schuylenburg, Jules Wulms, Alexander Serebrenik,

and Mark GJ van den Brand. 2014. Continuous integration in a social-coding
world: Empirical evidence from GitHub. In 2014 IEEE International Conference on

Software Maintenance and Evolution. IEEE, 401–405.
[68] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir

Filkov. 2015. Quality and productivity outcomes relating to continuous integra-
tion in GitHub. In Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering. ACM, 805–816.
[69] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp

Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017.
A tale of CI build failures: An open source and a financial organization perspec-
tive. In 2017 IEEE international conference on software maintenance and evolution

(ICSME). IEEE, 183–193.
[70] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu.

2019. A conceptual replication of continuous integration pain points in the
context of Travis CI. In Proceedings of the 2019 27th ACM JointMeeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering. ACM, 647–658.
[71] Wikipedia contributors. 2019. Cold start (computing) — Wikipedia, The Free En-

cyclopedia. https://en.wikipedia.org/w/index.php?title=Cold_start_(computing)
&oldid=883021431 [Online; accessed 21-February-2019].

[72] Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. 2009. Predict-
ing build failures using social network analysis on developer communication.
In Proceedings of the 31st International Conference on Software Engineering. IEEE
Computer Society, 1–11.

[73] Zheng Xie andMing Li. 2018. Cutting the Software Building Efforts in Continuous
Integration by Semi-Supervised Online AUC Optimization.. In IJCAI. 2875–2881.

[74] Shin Yoo and Mark Harman. 2007. Pareto efficient multi-objective test case
selection. In Proceedings of the 2007 international symposium on Software testing

and analysis. ACM, 140–150.
[75] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection

and prioritization: a survey. Software Testing, Verification and Reliability 22, 2
(2012), 67–120.

[76] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Mas-
similiano Di Penta. 2017. How open source projects use static code analysis
tools in continuous integration pipelines. In 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories (MSR). IEEE, 334–344.
[77] Chen Zhang, Bihuan Chen, Linlin Chen, Xin Peng, and Wenyun Zhao. 2019.

A Large-Scale Empirical Study of Compiler Errors in Continuous Integration.
(2019).

[78] Lingming Zhang. 2018. Hybrid regression test selection. In 2018 IEEE/ACM 40th

International Conference on Software Engineering (ICSE). IEEE, 199–209.
[79] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-

dan Vasilescu. 2017. The impact of continuous integration on other software
development practices: a large-scale empirical study. In Proceedings of the 32nd

IEEE/ACM International Conference on Automated Software Engineering. IEEE
Press, 60–71.

[80] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A
framework for checking regression test selection tools. In Proceedings of the 41st

International Conference on Software Engineering. IEEE Press, 430–441.
[81] Mahdis Zolfagharinia, Bram Adams, and Yann-Gaël Guéhénuc. 2017. Do Not

Trust Build Results at Face Value-An Empirical Study of 30 Million CPAN Builds.
In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories

(MSR). IEEE, 312–322.

https://stackoverflow.com/questions/48455623/skip-travis-build-if-an-unimportant-file-changed
https://stackoverflow.com/questions/48455623/skip-travis-build-if-an-unimportant-file-changed
https://docs.travis-ci.com/user/customizing-the-build/#skipping-a-build
https://docs.travis-ci.com/user/customizing-the-build/#skipping-a-build
https://en.wikipedia.org/w/index.php?title=Cold_start_(computing)&oldid=883021431
https://en.wikipedia.org/w/index.php?title=Cold_start_(computing)&oldid=883021431

	Abstract
	1 Introduction
	2 Motivating Hypotheses
	3 Our approach: SmartBuildSkip
	4 Research Questions
	5 Empirical Study 1: Evaluating our Motivating Hypotheses
	6 Empirical Study 2: Characterizing First Failures
	7 Experiment 1: Evaluating Build-Failure Prediction
	8 Experiment 2: Evaluating CI Cost Reduction
	9 Discussion
	10 Threats to Validity
	11 Related Work
	12 Conclusions and Future Work
	13 Replication
	References

