
The Impact of Regular Expression Denial of Service (ReDoS) in
Practice: An Empirical Study at the Ecosystem Scale

James C. Davis, Christy A. Coghlan, Francisco Servant, Dongyoon Lee
Virginia Tech

United States of America
{davisjam,ccogs,fservant,dongyoon}@vt.edu

ABSTRACT
Regular expressions (regexes) are a popular and powerful means
of automatically manipulating text. Regexes are also an understud-
ied denial of service vector (ReDoS). If a regex has super-linear
worst-case complexity, an attacker may be able to trigger this com-
plexity, exhausting the victim’s CPU resources and causing denial
of service. Existing research has shown how to detect these super-
linear regexes, and practitioners have identified super-linear regex
anti-patterns heuristics that may lead to such complexity.

In this paper, we empirically study three major aspects of ReDoS
that have hitherto been unexplored: the incidence of super-linear
regexes in practice, how they can be prevented, and how they can be
repaired. In the ecosystems of two of themost popular programming
languages — JavaScript and Python – we detected thousands of
super-linear regexes affecting over 10,000 modules across diverse
application domains. We also found that the conventional wisdom
for super-linear regex anti-patterns has few false negatives but
many false positives; these anti-patterns appear to be necessary,
but not sufficient, signals of super-linear behavior. Finally, we found
that when faced with a super-linear regex, developers favor revising
it over truncating input or developing a custom parser, regardless
of whether they had been shown examples of all three fix strategies.
These findings motivate further research into ReDoS, since many
modules are vulnerable to it and existing mechanisms to avoid it
are insufficient. We believe that ReDoS vulnerabilities are a larger
threat in practice than might have been guessed.

“Some people, when confronted with a problem, think ‘I know, I’ll
use regular expressions.’ Now they have two problems.”

–Jamie Zawinski

CCS CONCEPTS
• Software and its engineering→ Empirical software valida-
tion; Software libraries and repositories; • Security and privacy
→ Denial-of-service attacks;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236027

KEYWORDS
Regular expressions, ReDoS, catastrophic backtracking, empirical
software engineering, mining software repositories

ACM Reference Format:
James C. Davis, Christy A. Coghlan, Francisco Servant, Dongyoon Lee.
2018. The Impact of Regular Expression Denial of Service (ReDoS) in Prac-
tice: An Empirical Study at the Ecosystem Scale. In Proceedings of the
26th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’18), November 4–
9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3236024.3236027

1 INTRODUCTION
Regular expressions (regexes) are a popular and powerful means of
automatically manipulating text. They have been applied in a large
variety of application domains, e.g., data validation, data scraping,
and syntax highlighting [51], and are a standard topic in practical
programming texts [15, 27, 38].

Unfortunately, in most popular programming languages, regexes
also form an understudied denial of service vector: regular expres-
sion denial of service (ReDoS) [22, 23]. For example, in 2016 ReDoS
led to an outage at StackOverflow [26] and rendered vulnerable
any websites built with the popular Express.js framework [16].
ReDoS attacks are possible because many popular languages, in-
cluding JavaScript-V8 (Node.js), Python, Java, C++-11, C#-Mono,
PHP, Perl, and Ruby, rely on a regex engine with worst-case super-
linear behavior (SL behavior). When these regex engines evaluate
super-linear regexes (SL regexes) against malign input, the evalu-
ation takes polynomial or exponential time in the length of the
input, and the high-complexity evaluation overloads the server and
denies service to other clients.

ReDoS attacks were first proposed by Crosby in 2003 [22]. In
the 15 years since then we have seen advances in detecting SL
regexes [33, 36, 37, 45, 48, 52] as well as the introduction of language-
level [3] and engine-level [11, 14] defenses against SL behavior.
Others have provided conventional wisdom about SL regex anti-
patterns, i.e., heuristics to identify forms of a regex that are expected
to be particularly risky [29, 31, 32]. Missing, however, is an empirical
assessment of the incidence of SL regexes in practice. Simply put,
we do not know whether ReDoS is a parlour trick or a security
vulnerability common enough to merit further research.

In this paper, we perform the first large-scale empirical study
to understand the extent of SL regexes in practice as well as the
mechanisms that could be used to identify and repair them. We
analyze the ecosystems of two of the most popular programming
languages to understand the incidence of SL regexes. Our study
covers the Node.js (JavaScript) and Python core libraries, as well

https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1145/3236024.3236027

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J.C. Davis, C.A. Coghlan, F. Servant, and D. Lee

as 448,402 (over 50%) of the modules in the npm [12] and pypi [13]
module registries. We also study reports of ReDoS in these registries
to understand the fixes that developers provide for SL regexes.

We found that SL regexes are rather common: they appear in
the core Node.js and Python libraries as well as in thousands of
modules in the npm and pypi registries, including popular mod-
ules with millions of downloads per month. We found over 4,000
unique SL regexes across npm and pypi, covering a wide range of
application domains. Furthermore, nearly 300 of these regexes are
high-risk because they have exponential complexity. We disclosed
to maintainers the presence of SL regexes in 284 modules, of which
48 have been repaired so far. We found that developers repair SL
regexes using one of three techniques: trimming the input, revis-
ing the regex, or replacing it with alternate logic. Among these
techniques, revising the regex was the most common, regardless of
whether developers were previously aware of the others.

This paper provides the following contributions:
• We provide an empirical understanding of the extent (§4.1), seri-
ousness (§4.2), and distribution across application domains (§4.3)
of the incidence of SL regexes in two prominent software ecosys-
tems — Node.js and Python.

• We provide an empirical understanding of the effectiveness of
the conventional wisdom regarding SL regex anti-patterns (§5.1).

• We provide an empirical understanding of the strategies that
developers use to fix SL regexes (§6).

2 BACKGROUND
In this section, we review the behavior of SL regexes, their applica-
tion to ReDoS, and existing techniques to address them.

2.1 Super-Linear (SL) Regex Engines
Regex engines accept a regex describing a language, and an input
to be tested for membership in this language. At the core of most
regex engines is a backtracking-based search algorithm like the one
described by Spencer [42]. A backtracking regex engine constructs
a non-deterministic finite automaton (NFA) from the regex and
then simulates the NFA on the input [40]. The state of the NFA is
represented by a 2-tuple: its current vertex in the graph, and its
current offset in the input. To simulate non-determinism, whenever
the engine makes a choice it pushes the current NFA state onto a
stack of decision points. If a mismatch occurs, the engine backtracks
to a previous decision point to try another choice. This process
continues until the engine finds a match or exhausts the set of
decision points. Since each step of an NFA evaluation takes constant
time, the complexity of an evaluation corresponds to the number
of states that are explored.

A backtracking regex engine may have large worst-case com-
plexity if it does not take care to avoid redundant state exploration1.
To illustrate, suppose that two choices from a decision point reach
the same NFA state. Since from this state a fixed set of states will
be explored, this mutual state need be explored only once [30].
However, if no match is found then an incautious engine will ex-
plore it twice, once from each path from the decision point to the
mutual state. In the extreme, this can lead to super-linear behavior

1SL features like backreferences are another source of SL worst-case complexity. SL
behavior as a result of these features is out of the scope of this work.

(a) Railroad diagram [4].

<WS-2, O-1>
1 path

N-1 states below

<WS-2, O-2>
1 + 1 paths

N-2 states below

<WS-1, O-1>

<WS-1, O-2>

<WS-2, O-3>
1 + 2 paths

N-3 states below

<WS-1, O-3>

(b) NFA execution diagram (ex-
cerpt).

Figure 1: Diagrams for /\s*#?\s*$/ on malign input.

(SL behavior) when the evaluation complexity, i.e., the total number
of explored states, is polynomial or exponential in the input length.
SL behavior is also known as catastrophic backtracking.

SL behavior will only occur when a backtracking regex engine
evaluates an SL regex on a malign input. A malign input has three
components: a prefix string, a pump string, and a suffix string2. The
prefix brings the NFA to a set of states from which redundant explo-
ration becomes possible (ambiguous states [17]). Each repetition of
the pump yields a decision point whose complete exploration con-
tains redundant states. A final suffix ensures that the regex will not
match the input, forcing the regex engine to explore polynomially
or exponentially many redundant states during backtracking.

2.2 Example: An SL Regex in Python Core
For a detailed example of an SL regex, consider the regex repre-
sented in Figure 1a. We discovered this regex in the Python core
library difflib (CVE-2018-1061). Malign input for this regex con-
sists of: the empty prefix, a pump of “any whitespace”, and a suffix
of “any non-whitespace”.

On this malign input, a backtracking regex engine will perform
an O(n2) doubly-nested traversal of the input [48], as illustrated
in Figure 1b. When in the first whitespace vertex WS-1, each of the
N pumps is a decision point: the NFA chooses whether to remain or
to advance to the second whitespace vertex WS-2 by skipping the
optional ‘#’ vertex. When the suffix causes a mismatch, the regex
engine tries the other choice. As a result, the NFA will reach the
WS-2 vertex N times, and each move will occur at a different NFA
state (same vertex, different offset). When the NFA advances at
offset i > 1, it will redundantly explore states <WC-2, O-i> through
<WC-2, O-N> since these are also explored after the NFA advances
at earlier offsets. Thus the engine will visit each of the <WS-1, O-i>
states once, and each of the <WS-2, O-j> states j times, for a total
of (N) + (1 + 2 + ... + N) = O(N 2) visited states.

2.3 Using SL Behavior for ReDoS
Backtracking regex engines can be used as a denial of service vec-
tor. Regular expression denial of service (ReDoS) attacks use an SL
regex query to consume the CPU of a server, reducing the number of
clients it can service [22, 39]. ReDoS attacks have four requirements.
First, the victim must use a backtracking regex engine. Second,
the victim must use an SL regex. Third, the victim must evaluate
(malign) user input against this regex without any resource lim-
itations (e.g., a timeout). Fourth, the victim must be running on
2Malign input may contain multiple pairs of prefixes and pumps.

The Impact of ReDoS in Practice ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

the server-side. If all four conditions are met, an attacker carries
out a ReDoS exploit by sending malign input to the victim to be
evaluated against its SL regex, triggering SL behavior that wastes
server resources, reducing the CPU available to other clients.

2.4 Mechanisms to Prevent SL Behavior
The practitioner community has explored three approaches to pre-
venting SL behavior: abortive backtracking, disallowing backtrack-
ing altogether, and avoiding SL regex anti-patterns.

Abortive Backtracking. Some mainstream languages defend de-
velopers against SL regex engine behavior. The .NET framework
added optional regex timeouts in 2012 [3, 50], and the PHP and Perl
engines throw exceptions if they perceive too much backtracking.

Non-backtracking engines. A more radical approach is to use
the linear-time regex evaluation algorithm developed by Thomp-
son [46], though this requires deviating from the Perl-Compatible
Regular expressions (PCRE) standard supported bymany languages3.
This approach was popularized by Cox in 2007 [21] and has since
been adopted by Rust [14] and Go [11].

Avoiding anti-patterns. Several of the professional reference texts
on regexes suggest “SL regex anti-patterns”: developers should
avoid nested quantifiers (“star height”) [29, 31], and more gener-
ally should “watch out when...[different] parts of the [regex] can
match the same text” [32]. Although this advice is vague, avoid-
ing SL regexes is the only cross-language technique available to
practitioners. Timeouts and linear-time engines are luxuries not
available everywhere, so practitioners must be ready to address the
worst-case behavior of the regexes in their codebases.

3 RESEARCH QUESTIONS
Our goal in this study is to understand ReDoS vulnerabilities in
practice across three themes: their incidence in practice, how they
can be prevented, and how they can be fixed. In particular, we focus
our investigation on studying SL regexes, which can be exploited to
cause ReDoS. We ask seven research questions along these themes.

First, we study the incidence of SL regexes in practice to un-
derstand to what extent ReDoS is a serious vulnerability that af-
fects many different kinds of software projects. The answer to this
investigation will help us understand the importance of ReDoS
vulnerabilities.

Second, we study whether SL regex anti-patterns do in fact
signal SL regexes. As we discussed in §2.4, avoiding SL regex anti-
patterns is the only cross-language mechanism used in practice to
try to prevent ReDoS, but this approach is not yet evidence-based.
In this investigation we check the validity of this conventional
wisdom.

Third, we study how ReDoS vulnerabilities are fixed in practice.
A lack of understanding of the right strategies to fix SL regexes is a
serious gap in the research literature.We bridge this gap by studying
how developers are fixing ReDoS vulnerabilities in practice. This
empirical understanding will allow other developers to reuse the
wisdom of the experts that are already fixing ReDoS vulnerabilities.

3In particular, a linear-time engine precludes general support for fundamentally super-
linear features like backreferences and lookaround assertions.

Theme 1: Understanding the incidence of ReDoS in practice.
RQ1: How prevalent are SL regexes in practice?
RQ2: How strongly vulnerable are the SL regexes?
RQ3: Which application domains do SL regexes affect?

Theme 2: Preventing ReDoS.
RQ4: Do SL regex anti-patterns signal SL regexes?

Theme 3: Fixing ReDoS.
RQ5: How have developers fixed ReDoS vulnerabilities?
RQ6: Howwould developers fix ReDoS vulnerabilities if they knew

all of the currently-applied approaches?
RQ7: How effective are the fixes that developers adopt?

4 THEME 1: UNDERSTANDING THE
INCIDENCE OF REDOS IN PRACTICE

4.1 RQ1: How Prevalent are SL Regexes in
Practice?

To date there have been a small number of reports of SL regexes
leading to ReDoS in the wild, which we discuss in depth in §6. How
many more remain undiscovered? In this section we present the
first systematic study of the incidence of SL regexes in practice.

4.1.1 Methodology. In brief, this is how we measured the inci-
dence of SL regexes in the wild. We used static analysis to extract
all the regexes used in the Node.js and Python core libraries as
well as more than half of the modules in the npm (JavaScript) and
pypi (Python) registries. We applied SL regex detectors to filter for
potentially-SL regexes, and concluded with a dynamic validation
phase to prove that a regex was actually vulnerable.

Which software.We chose JavaScript as our primary language of
interest for two reasons. First, as others have observed [20, 24, 35],
ReDoS vulnerabilities in JavaScript are particularly impactful be-
cause JavaScript frameworks use a single-threaded event-based ar-
chitecture. A ReDoS attack on a Node.js server immediately reduces
the throughput to zero. Second, JavaScript has a huge developer
base — there are more open-source libraries for JavaScript than
any other language. The registry of JavaScript modules, npm [12],
has over 590,000 modules [25], more than double the size of the
next-closest registry (Java/Maven). To gauge the generality of our
results, we also studied Python, another popular scripting language
whose pypi [13] registry contains 130,000 modules.

The source code in software ecosystems can be divided into the
language core (“platform”), 3rd-party libraries, and applications [34].
While applications are difficult to enumerate, in modern ecosystems
the language core and 3rd-party libraries are generally open-source,
and 3rd-party libraries are conveniently organized in a registry that
tracks metadata like where to find the module’s source code. As a
result, we studied the incidence of SL regexes in each language’s
core libraries and 3rd-party modules listed in the registries.

For each language’s core, we tested each supported version. For
3rd-party libraries, we examined the master branch of every module
listed in the npm and pypi registries that had a URL on which we
could run git clone. We chose not to use the packaged version of
modules provided by the registries because these are sometimes
packed, minified, or otherwise obfuscated in ways that complicate
analysis, attribution, and vulnerability reporting.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J.C. Davis, C.A. Coghlan, F. Servant, and D. Lee

Extracting regexes. After cloning each module, we statically ex-
tracted its regexes. We cloned the latest master branch, with no
history to minimize the impact on the VCS hosting service. Then
we scanned it for source code based on file extensions (.js or .py).
We built an abstract syntax tree (AST) from each source file, using
babylon [6] for JavaScript files and the Python AST API for Python
files. Walking the ASTs, we identified every regex declaration and
extracted the pattern, skipping any uses of dynamic patterns. Ex-
cluding these dynamic patterns means our results provide lower
bounds on the number of SL regexes.

Identifying SL regexes. After extracting the regexes used in each
module under study, we reduced this list to a unique set of patterns
mapped to the modules using them. We then analyzed these unique
patterns.

Our SL regex identification process has a static detection phase
and a dynamic validation phase. For the static detection phase, we
queried all three of the SL regex detectors developed in previous
work: rxxr2 [37], regex-static-analysis [48], and rexploiter [52].
These detectors use different algorithms to report whether or not a
regex may exhibit super-linear behavior, and if so will recommend
malign input to trigger it. Our static phase collects each detector’s
opinion and produces a summary. The detectors, most frequently
regex-static-analysis, may consume excessive time or memory in
making their decision, so we limited the detectors to 5 minutes and
1GB of memory on each regex and discarded unanswered queries.
These SL regex detectors are research prototypes, so they do not
support all regex features nor guarantee correctness.

Our dynamic validation phase uses this summary to test the
accuracy of each detector’s prediction for the regex engine of the
language of interest. The detectors follow different algorithms based
on assumptions about the implementation of the regex engine, and
these assumptions may or may not hold in each language of interest.
To validate a detector’s predicted malign input, our validator tests
this malign input on the possibly-SL regex in small Node.js and
Python applications we created.

This is how we identified SL regexes. To permit differentiating
regexes by their degree of vulnerability (§4.2), we measured how
long each regex took to match a sequence of malign inputs with
varying numbers of pumps. We began with one pump and followed
a geometric sequence with a factor of 1.1, rounding up. We tested
100 inputs, the last with 85,615 pumps, and marked the regex super-
linear if the regex match took more than 10 seconds on a match,
as this is far longer than a linear-time regex match would take.
We stopped at 85,615 pumps for two reasons. First, this number
was sufficient to cause super-linear complexity to manifest without
being attributable to the overheads of enormous strings. Second, this
many pumps results in malign inputs 100K-1M characters long, long
enough to become potentially expensive for attackers to exploit. We
distributed this analysis and ran multiple tests on each machine in
parallel, dedicating one core to each test with taskset [1] to remove
computational interference between co-located tests.

4.1.2 Results. We found that SL regexes are surprisingly com-
mon in practice. The Node.js and Python core libraries both con-
tained SL regexes, and about 1% of all unique regexes in both npm
and pypi were SL regexes. In all, 3% of npm modules and 1% of pypi
modules contained at least one SL regex.

Table 1: Results of our search for SL regexes in the npm and
pypi module registries. Troublingly, 1% of unique regexes
were SL regexes, affecting over 10,000 modules.

Registry Total
Modules

Scanned
Modules

Unique
Regexes

SL
Regexes

Affected
Modules

npm 565,219 375,652
(66%)

349,852 3,589
(1%)

13,018
(3%)

pypi 126,304 72,750
(58%)

63,352 704
(1%)

705
(1%)

Language Core. We found one SL regex in the core libraries of
Node.js (server-side JavaScript). The currently supported versions
of Node.js are v4, v6, v8, and v9. We scanned the core libraries
(lib/) of each of these versions. In v4 we identified and disclosed
two SL regexes used to parse UNIX and Windows file paths. These
regexes had been removed for performance reasons in v6 so the
other versions of Node were not affected. This vulnerability was
published as CVE-2018-7158 and fixed by the Node.js core team.

We found three SL regexes in the core libraries of Python. The
currently supported versions of Python are v2 and v3. We scanned
the core libraries (Libs/) of each of these versions. Both versions
shared two SL regexes, one in poplib and one in difflib. We iden-
tified an additional vulnerability in the v2.7.14 fpformat library.
These vulnerabilities were published as CVE-2018-1060 and CVE-
2018-1061; we authored the patches.

Third-party modules. Table 1 summarizes the results of our reg-
istry analysis. We were able to clone 66% of npm (375,652 modules)
and 58% of pypi (72,750 modules). In this sample of each registry we
found that about 1% of the unique regexes were SL regexes (3,589
in npm, and 704 in pypi).

Figure 2 summarizes two different distributions in the npm and
pypi datasets using Cumulative Distribution Functions (CDFs). The
dotted lines show the distribution of the number of unique regexes
in each module. We can see that more than 30% of npm and pypi
modules use at least one regex, and that npm modules tend to con-
tain more unique regexes than pypi modules do. The solid lines
show the distribution of the number of modules each SL regex
appears in: in the npm registry some SL regexes appear in hun-
dreds or thousands of modules, while in the pypi registry the most
ubiquitous SL regexes are only used in about 50 modules.

To give a sense of how impactful these SL regexes might be, for
eachmodulewe obtained the popularity (registry downloads/month)
and computed the project size based on the source files we scanned
(using cloc [9]). Modules with SL regexes are indicated in black
in Figure 3 (npm) and Figure 4 (pypi). In both registries, larger
modules are more likely to contain SL regexes, and SL regexes are
slightly more common in modules with lower download rates.

4.2 RQ2: How Strongly Vulnerable are the SL
Regexes?

From a developer perspective, SL regexes whose super-linear be-
havior manifests on shorter malign inputs are of greater concern
than those only affected by longer malign inputs. Longer malign
inputs could be prevented by other parts of the software stack (e.g.,
limits on HTTP headers), while short malign inputs may only be
prevented by modifications to the vulnerable software itself.

The Impact of ReDoS in Practice ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Figure 2: This figure shows two CDFs. The dotted lines indi-
cate the distribution of the number of unique regexes used
in modules, while the solid lines show the distribution of
the number of modules affected by SL regexes. Note the log
scale on the x-axis.

Figure 3: npmmodules by size and popularity (log-log). The
13,018 modules with SL regexes are in black.

Figure 4: pypi modules by size and popularity (log-log). The
705 modules with SL regexes are in black.

In this section we refine our definition of SL regexes, differenti-
ating between exponential and polynomial vulnerabilities.

4.2.1 Methodology. While the degree of vulnerability of an SL
regex might be predicted by static analysis, we are not confident
of the accuracy of such a prediction since it is not tied to a par-
ticular regex engine implementation. Thus, we used curve fitting
to differentiate between exponential and polynomial SL regexes.

Table 2: This table shows the degree of vulnerabilities in
the npm and pypi datasets. The polynomial vulnerabilities
are further broken down by the degree of the polynomial,
b, which we rounded to the nearest integer. This excluded
some regexes whose polynomial degree rounded down to 1.

Degree of vulnera-
bility

npm (3,589 vulns) pypi (704 vulns)

Exponential O(2n) 245 (7%) 41 (6%)
Polynomial O(n2) 2,638 (74%) 534 (76%)
Polynomial O(n3) 535 (15%) 107 (15%)
Polynomial O(n4) 44 (1%) 5 (1%)
Polynomial O(nb>4) 100 (3%) 15 (2%)

As discussed in §4.1, our dynamic validation step tests the match
time of the appropriate regex engine (JavaScript-V8 or Python) on
a sequence of malign inputs with a geometrically increasing num-
ber of pumps. We measured the time that it took to compute each
match. We then fit the time taken for different numbers of pumps
against both exponential (f (x) = abx) and polynomial (power-law:
f (x) = axb) curves and we chose the curve that provided the better
fit by r2 value. When the malign inputs from the different SL regex
detectors resulted in different curves, we used the steepest, dead-
liest curve. As in §4.1.1, we distributed the work across multiple
machines. As result, the multiplicative factors of the curves (a) are
not comparable, but the bases or exponents (b) are.

This analysis allows us to create a hierarchy of vulnerabilities.
Exponential SL regexes are more vulnerable than polynomial SL
regexes, because the number of pumps (length of malign input)
required to achieve noticeable delays is smaller. For the same reason,
among polynomial SL regexes, those with larger b values are more
vulnerable than those with smaller b values. The curve type and
the b values influence the degree of vulnerability more strongly
than the a values.

4.2.2 Results. A breakdown of the regexes by their degree of
vulnerability is in Table 2. Exponential SL regexes were relatively
rare in both registries: only 7% of the SL regexes from npm and
6% of those from pypi were exponential. The majority of the SL
regexes in both registries were polynomial, tending to O(n2) and
O(n3).

Table 2 tells us that the vast majority of SL regexes are polyno-
mially so, not exponentially so. This has implications for detecting
SL regexes as well as for working with regexes.

For detecting SL regexes. The rxxr2 REDOS [37] detector only
looks for exponential SL regexes. So too do two of the SL regex anti-
patterns of conventional wisdom, Star Height and QAD (discussed
in §5.1). These approaches to detecting SL regexes will thus miss
about 90% of SL regexes.

For working with regexes. The super-linear behavior of polyno-
mial regexes typically manifests for malign inputs on the order of
many hundreds or thousands of characters long. Such strings are
often longer than any legitimate strings, as is the case for strings
with many of the semantic meanings listed in Table 3 (§4.3). Thus,
rejecting too-long strings before testing them against a regex would
be a cheap and effective defense approach and should be considered
as a best practice when writing regexes.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J.C. Davis, C.A. Coghlan, F. Servant, and D. Lee

Table 3: Proposed common semantic meanings for regexes.
The examples are automatically-labeled (SL) regexes from
our npm dataset. The last two columns are the number of
regexes labeledwith each semanticmeaning in our npmand
pypi datasets.

Meaning Example npm pypi

Error messages /no such file '.+[/\\](.+)'/ 22,197 881
File names* /[a-zA-Z-0-9_\/-]+\.json/ 10,151 497
HTML /href="(.+\.css)(\?v=.+?)?"/ 8,786 2,504
URL* /^.+:\/\/[^\n\\]+$/ 6,986 2,048

Naming convention /^[$_a-z]+[$_a-z0-9-]*$/ 4,096 1,056
Source code /function.*?\(.*?\)\s*\{\s*/ 3,941 105

User-agent strings* /Chrome\/([\w\W]*?)\./ 3,135 124
Whitespace* /(\n\s*)+$/ 2,016 441
Number* /^(\d+|(\d*\.\d+))+$/ 762 238
Email* /^\S+@\S+\.\w+$/ 444 97

Classification rate — 18% 13%

4.3 RQ3: Which Application Domains do SL
Regexes Affect?

Regexes are used in a variety of application domains. From our own
experience in writing regexes, and from a manual analysis of 400
regex uses in npm modules, we posit that developers often write
regexes with one of the semantic meanings listed in Table 3. These
semantic meanings may be of interest in some application domains
but not others. For example, we imagine that identifying source
code or naming conventions is the domain of linters and compilers,
that webservers are more interested in identifying HTML and user-
agent strings, and that servers or scripts may be prepared to change
their behavior based on the error messages that they encounter.

4.3.1 Methodology. In this section, we describe our techniques
to automatically categorize regexes into these semantic groups. We
began by manually labeling the semantic meaning of 400 regex
usage examples based on inspection of the regex itself as well as
how it was used in the project(s) in which we found it. Although
some of the regexes we encountered were obscure and their purpose
could only be identified by looking for comments and other clues
in the surrounding source code, it became clear to us that many
regexes with the semantic meanings listed in Table 3 could be
automatically classified. There were 200 unique regexes among
these 400 examples, and we found that the duplicated regexes were
always used with the same semantic meaning in different modules.

We developed an automatic labeling scheme that uses a com-
bination of parsing and “meta-regexes” to label regexes based on
the proposed semantic meanings. For example, here is a simplified
version of our meta-regex to label regexes as describing whitespace:

/^\^?(\\s|\\n|\\t| |[\|*\+\[\]\(\)]|)+\$?$/
This simplified regex looks for a string (regex pattern) containing

only whitespace characters, as well as meta-characters that might
be used to anchor the pattern (‘ˆ’ and ‘$’) or to encode varying
quantities of whitespace (‘+’, ‘*’, etc.).

We iteratively improved our regex labeler. In each iteration, we
labeled a randomly selected subset of 10,000-30,000 regexes from
our npm regex dataset. We manually examined 100 of the regexes
assigned to each semantic meaning. One or more representatives of

any mis-labeled regexes were added to a test suite, and the iteration
was complete once the regex labeler correctly identified all the
regexes in the suite.

This process resulted in a precise regex labeler for regexes that
are reasonably specific. As you might expect based on how we
derived it, our labeler works well for “easy to classify” regexes that
restrict the input to something close to the expected language.

We refined our labeler through 17 iterations. At the conclusion
of this process our test suite contained 358 regexes, and we were
reasonably confident in its precision. We then applied it to our
npm and pypi datasets. Irrespective of whether our list of semantic
meanings for regexes is complete, it serves the goal of studying how
different domains may be affected by ReDoS. We leave the search
for a complete list of regex semantic meanings to future work.

4.3.2 Results. First, as summarized in Table 3, we found regexes
in all of these domains in both npm and pypi. Second, some semantic
meanings are more prone to being expressed with SL regexes than
others. As can be seen in Figure 5, developers should be cautious
when writing regexes for emails, user-agent strings, source code,
and HTML.

Figure 5: Percent of SL regexes from the npm and pypi
datasets, within each semantic meaning.

5 THEME 2: PREVENTING REDOS
Though we used detectors to identify SL regexes in §4.1.1, these
detectors are academic prototypes not ready for use in production.
On the other hand, software developers already have conventional
wisdom about what makes a regex super-linear. If this conventional
wisdom is accurate, then publicizing it may be an effective path to
preventing ReDoS by identifying and eliminating SL regexes.

5.1 RQ4: Do SL Regex Anti-Patterns Signal SL
Regexes?

In §2 we mentioned several SL regex anti-patterns: avoid nested
quantifiers, and avoid regexes with ambiguity. In this section we
test two aspects of this conventional wisdom. First, we evaluate the
extent to which these SL regex anti-patterns appear in SL regexes
— are these anti-patterns a necessary condition for SL behavior?
Second, we measure the extent to which these anti-patterns also
appear in safe regexes, to determine whether these anti-patterns
are a sufficient condition for SL behavior.

The Impact of ReDoS in Practice ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

5.1.1 Methodology. Three SL regex anti-patterns. We know
of three SL regex anti-patterns. In §2.4 we introduced the two SL
regex anti-patterns discussed in reference texts on regexes. The first,
star height, is discussed in many places including [29, 31, 44]. The
second is rather more vague: “watch out when...[different] parts
of the [regex] can match the same text” [32]. We identified two
distinct ways that such ambiguity arose in our SL regex corpora,
yielding three total anti-patterns.

The first anti-pattern is star height > 1, i.e., nested quantifiers.
This leads to SL behavior when the same string can be consumed by
an inner quantifier or the outer one, as is the case for the string “a”
in the regex /(a+)+/. In this case, the star height of two results in
two choices for each pump, with worst-case exponential behavior
on a mismatch. This anti-pattern is commonly used in practice
through the safe-regex tool [44].

The second anti-pattern is a form of ambiguity that we call
Quantified Overlapping Disjunction (QOD). An example of this
anti-pattern is /(\w|\d)+/. Here we have a quantified disjunc-
tion (/(...|...)+/), whose two nodes overlap in the digits, 0-9.
On a pump string of a digit there are two choices of which group
to use, with worst-case exponential behavior on a mismatch.

The third anti-pattern is another form of ambiguity that we
call Quantified Overlapping Adjacency (QOA). We gave a detailed
example of this anti-pattern in §2.2: /\s*\.#\s*$/. The two quan-
tified \s* nodes overlap, and are adjacent because one can be
reached from the other by skipping the optional octothorpe. This
anti-pattern has worst-case polynomial behavior on a mismatch.

Testing for the anti-patterns.We implemented tests for the pres-
ence of these anti-patterns using the regexp-tree regex AST gener-
ator [8]4. To measure star height we traverse the AST and maintain
a counter for each layer of nested quantifier: +, *, and ranges where
the upper bound is at least 255. To detect QOD we search the AST
for quantified disjunctions. When we find them we enumerate the
unicode ranges of each member of the disjunction and test for over-
lap. To detect QOA we search the AST for quantified nodes. From
each node we walk forward looking for a reachable quantified ad-
jacent node with an overlapping set of characters, stopping at the
earliest of: a quantified overlapping node (QOA), a non-overlapping
non-optional node (no QOA), or the end of the nodes (no QOA). For
QOD and QOA our prototype only considers nodes containing indi-
vidual quantified characters (e.g., /\d+/ or /.*/, not /(ab)+/). In
keeping with the conventional wisdom, none of our tests includes
a check for a mismatch-triggering suffix.

5.1.2 Results. The results of applying our anti-pattern tests to
our npm and pypi regex datasets are shown in Table 4. While we
found at least one anti-pattern in most of the SL regexes (81-86%),
we also found many false positives — anti-patterns in safe regexes.

Columns 2 and 3 show that the conventional wisdom of SL regex
anti-patterns appears to supply the necessary conditions for SL
behavior. Our tools found these anti-patterns in over 80% of the SL
regexes in both ecosystems. Among the SL regexes, the (polynomial)
QOA anti-pattern was more common than the (exponential) others,
agreeing with our earlier finding that polynomial SL regexes are
4The safe-regex tool [44] is implemented incorrectly, so we used our own implementa-
tion. We have provided a patch to the author of safe-regex.
5Groups with lower quantifications do not readily exhibit super-linear behavior.

Table 4: Utility of the SL regex anti-patterns, as measured
by our tools. For each anti-pattern, we present the number
of SL regexes that had this pattern in each ecosystem, and
then the false positive rate. For the false positive rate we
rely on the SL regex detectors (§4.1.1) as ground truth. For
example, in npm 12% of the SL regexes had star height > 1,
but 94% of the regexes with star height > 1 were linear-time.
As some regexes have multiple anti-patterns, the final row
eliminates double-counting.

Anti-
pattern

Number of SL regexes False positive rate
npm pypi npm pypi

Star height > 1 443 (12%) 62 (2%) 94% 98%
QOD 40 (1%) 6 (1%) 97% 95%
QOA 2,548 (71%) 555 (79%) 90% 94%

Totals 2,901 (81%) 604 (86%) 91% 95%

more common than exponential SL regexes (Table 2). Not all SL
regexes were labeled. We manually inspected a random sample of
70 of the unlabeled npm SL regexes and confirmed that 65 of them
contained one or more of these anti-patterns, using constructions
too complex for our current anti-pattern test tools to detect.

However, these anti-patterns are clearly not sufficient to make
an SL regex. Our tools exhibit high false positive rates; as columns
4 and 5 show, only a small fraction of the regexes with these anti-
patterns were SL regexes in either ecosystem.

6 THEME 3: FIXING REDOS
6.1 RQ5: How Have Developers Fixed ReDoS

Vulnerabilities?
Here we provide the first characterization of the fix approaches
developers have taken when addressing ReDoS vulnerabilities. This
study tells us which fix strategies developers currently use, setting
the stage for a follow-up study (§6.2) of which fix strategies develop-
ers prefer. In addition, understanding the fix approaches developers
generally take is a first step towards several promising research
directions. For example, researchers interested in automatically
repairing ReDoS vulnerabilities will benefit from knowing which
types of patches developers might be willing to apply.

6.1.1 Methodology. We were interested in thorough reports
describing SL regexes and how developers fixed them. We thus
searched for ReDoS in security databases using the keywords “Cat-
astrophic backtracking”, “REDOS”, and “Regular expression denial
of service”. We searched both the CVE database [10] and the Snyk.io
database [41]6. We used any reports with two properties: (1) the
report used the definition of ReDoS given in §2.3; and (2) the vul-
nerability was fixed and the report included a link.

For each vulnerability report, we manually categorized the fix
strategy the developers took. If a fix used more than one strategy
(e.g., both Trim and Revise), we counted it under each of the used
strategies.

6Snyk.io’s database tracks vulnerabilities in popular module registries, including npm
and pypi.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J.C. Davis, C.A. Coghlan, F. Servant, and D. Lee

Table 5: Examples of the fix strategies for an SL regex we
reported in Django [2] (CVE-2018-7536). This regex detects
an email, according to both the source code and our regex
labeler (§4.3). The developers chose to fix this ReDoS vulner-
ability using the algorithm described in “Replace”.

Example

Original /^\S+@\S+\.\S+$/
Trim if 1000 < input.length: throw error

else: test with existing regex
Revise /^[^@]+@([^\.@]+\.)+$/
Replace* Custom parser: (1) Exactly one @ must occur, at

neither end of the string; (2) there must be a ‘.’ to
the right of the @, but not immediately so.

Table 6: Fix approaches taken to address SL regexes, in both
the historic and new datasets. Examples of each approach
are given in Table 5. Some of the new fixes used more than
one strategy.

Trim Revise Replace Total

Historic Fix approach 8 18 11 37
Unsafe fixes 1 2 0 3

New Fix approach 3 35 15 48
Unsafe fixes 0 0 0 0

6.1.2 Results. ReDoS Reports. We identified 45 unique his-
toric ReDoS reports (condition 1) across the CVE and Snyk.io
databases. The earliest report was from 2007 and the most recent
from 2018. 37 of these reports included fixes (condition 2). Three of
these reports were unique to the CVE database, 27 were unique to
the Snyk.io database, and 7 appeared in both databases.

Fix strategies. Three fix strategies were typical in these reports.

(1) Trim: Leave the regex alone, but limit the size of the input to
bound the amount of backtracking.

(2) Revise: Change the regex.
(3) Replace: Replace the regex with an alternative strategy, e.g.,

writing a custom parser or using a library.

Table 5 gives an example of each fix strategy. Only the Revise
strategy was discussed in any of the reference texts on regexes we
reviewed [28, 29, 31, 32].

Table 6 summarizes the results from this study, as well as the
subsequent studies on new fixes (§6.2) and on fix correctness (§6.3).
In the first row, we can see that developers in the historic dataset
commonly Trimmed, Revised, or Replaced, each more than 20% of
the time.

6.2 RQ6: HowWould Developers Fix ReDoS
Vulnerabilities if They Knew All of the
Currently-Applied Approaches?

In §6.1 we described the three common fix strategies developers
used in the historic ReDoS reports. However, we do not know
whether these developers knew every strategy, and thus we cannot
be sure that they preferred one strategy over another. Next, we

describe the fix strategies taken by developers whowere fully aware
of all of the strategies.

6.2.1 Methodology. To learnwhat fix strategies developerswould
take if they knew all of the options, we needed to convince a siz-
able group of developers to fix SL regexes. Because we felt that
the maintainers of popular modules would be more likely to fix
problems therein, we examined the use of SL regexes in all npm
and pypi modules downloaded more than 1000 times per month
(cf. Figures 3 and 4 for the effect of this filter). We filtered these
modules for those whose SL regex(es) were clearly a ReDoS vector
based on a manual inspection, and contacted the maintainers of
those modules by email.

In our disclosures, we included a description of the vulnerability:
(1) the SL regex(es) and the files in which they lay; (2) the degree of
vulnerability (§4.2) for each regex; (3) eachmalign input, with prefix,
pump, and suffix; and (4) the length of an attack string leading to
a 10-second timeout on a desktop-class machine. To facilitate our
experiment, we also included: (5) a description of the three fix
strategies we observed in the historic data (Table 5), with links to
two patches for each.

6.2.2 Results. After applying our two-stage filter, we disclosed
284 vulnerabilities across both ecosystems to the module main-
tainers. 48 (17%) of our disclosures have resulted in fixes so far.
Prominent projects that applied fixes based on our reports include
the Hapi web framework, the MongoDB database, and the Django
web framework.

The fix strategies the maintainers chose are shown in Table 6.
Compared to the historic fix strategies, developers exposed to ex-
amples of all three fix strategies still preferred Revise to Trim. The
use of Revise rose from 49% to 73%, while the use of Trim fell from
22% to 6%. The use of Replace remained around 30%. Clearly these
developers preferred Revise when they considered all three choices.

6.3 RQ7: How Effective are the Fixes that
Developers Adopt?

Any one of fix strategies in Table 5 can go awry. To Trim, develop-
ers must solve a Goldilocks problem: trim too short and valid input
will be rejected, trim too long and the vulnerability will remain. To
Revise, developers must craft a linear-time regex that matches a
language close enough to the original that their APIs continue to
work. Lastly, to Replace, developers must write a parser for the
input that matches an equivalent or related language.

In this study we examine the correctness of developers’ fixes.
6.3.1 Methodology. Here is our fix safety classification scheme.

We called a Trim fix unsafe if the maximum allowed input length
can still trigger a noticeable slowdown. We compared the input
limit to the lengths of malign inputs derived using the SL regex
identification procedure from §4.1. We called a Revise fix unsafe if
it was labeled vulnerable by our SL regex identification procedure.
We called a Replace fix unsafe if the replacement logic was super-
linear in complexity based on manual inspection.

6.3.2 Results. Our findings for the effectiveness of the historic
and new fixes are summarized in Table 6. Several of the historic
fixes were incorrect. The new fixes were uniformly correct (nearly
all developers asked us to review their fixes before publishing their
changes).

The Impact of ReDoS in Practice ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Trim. 1 of the 8 historic Trim fixes was unsafe. The initial choice of
length limit was too generous and the regex remained vulnerable for
two years before this was discovered and the length limit lowered.

Revise. 2 of the 18 historic fixes resulted in a revised, but still SL,
regex. One of these was replaced before our study. As a testament
to the effectiveness of our approach, we discovered the other in §4.1
and disclosed it in §6.2 before performing this portion of our study.

Replace. We manually inspected the fixes that used the Replace
strategy to gauge their complexity. All appeared sound, relying on
one or more linear scans of the input.

Testing their fixes. Regardless of the fix strategy, developers did
not usually include test cases for their changes. In the historic
dataset, 8 of the 37 fixes included tests. In the new dataset, 18 of
the 48 fixes included tests.

7 DISCUSSION AND RECOMMENDATIONS
We believe it is clear from our findings that ReDoS is not a niche
concern but a potentially common security vulnerability. Given
the number, variety, and ubiquity of SL regexes that we found, we
believe that developers should not be left to their own devices.

Make regex engines less prone to SL behavior.We suggest that
language developers work with regex engine developers to provide
application developers with reasonable guarantees about the worst-
case performance of their regexes. This guarantee might be on
the computational complexity of the operation, as Rust and Go
offer, though doing so restricts the range of regex features to which
developers have access7. The guarantee might instead be about the
total amount of backtracking experienced (as in Perl and PHP), or
about the total amount of time that might be spent in a regex query
(as the .NET framework optionally supports).

Degrees of vulnerability. Differentiating between exponential
and polynomial SL regexes gives developers insight into valid fix
approaches. Trimming is a possible fix strategy for polynomial
SL regexes, but not for exponential ones. But make no mistake,
polynomial vulnerabilities can be just as disastrous. There is little
difference in the cost for attackers to send malign inputs of 100
characters or 10,000, so long as they accomplish their aim of denying
service to legitimate users.

Experiences fixing SL regexes. In addition to the 48 fixes from
module maintainers, we submitted 9 fixes when maintainers asked
us for help. Our own experiences may illuminate some of the factors
that developers will consider when selecting a fix strategy, though
we believe this too is a promising direction for future research.

The fix strategy we selected (1 Trim, 9 Revise, 2 Replace, with 3
overlaps) depended on both whether the SL regex was exponential
or polynomial, and how identifiable the language of the regex was.
When a regex was exponential or was polynomial with a large
degree, the vulnerability would manifest on short malign input. We
fixed these by Revising, aided by visualizations from the regexper

tool [4] to understand the original language and study the source
of the SL behavior. When the SL behavior was less severe (e.g.,

7In our npm and pypi datasets, however, these features are rarely used. 338,065 of
the unique npm regexes (97%) and 58,800 of the unique pypi regexes (93%) use only
linear-time features.

quadratic), we considered both Revise and Trim. When we could
discern the language described by the regex, we favored Revise,
but when the regex’s language was unclear or many regexes were
applied to the same input (e.g., parsing a user agent string), Trim
was an attractive alternative. We felt an aversion to Replace because
it felt overly verbose.

Libraries.We were surprised by the variety of regexes we found
with the same semantic meaning (§4.3). Surely we do not need 6,986
different regexes to parse URLs, nor 444 different regexes to parse
emails, especially not when hundreds of these variations exhibit
SL behavior. We therefore recommend developers make greater
use of libraries for parsing common constructs like those with the
semantic meanings indicated with a ‘*’ in Table 3. Along these lines,
it would also be helpful if RFCs included linear-time regexes to
parse key fields and protocols.

ConventionalWisdom.Our findings in §5.1 (Table 4) give nuance
to the conventional wisdom on SL regex anti-patterns. Though Star
Height, QOD, and QOA were present in nearly all SL regexes in our
datasets, they were also present in ten times as many linear-time
regexes as measured by our tools. This finding speaks to the value
of using SL regex detectors. However, the anti-patterns do give
insight into the root cause of an SL regex, and can be used with the
Revise fix strategy.

Why might SL regexes be more pollutive in npm than in
pypi? We thought the difference between the npm and pypi “SL
regex module appearances” curves (solid lines in Figure 2) was
striking. Why might the most ubiquitous SL regexes pollute only 50
modules in pypi but hundreds in npm? We think the multi-module
appearances of SL regexes in npm can be attributed to three causes.
(1) Copy/pasting useful regexes from places like StackOverflow. We
found several examples of SL email regexes originating on Stack-
Overflow. See for example the exponential SL regex of [7], which
has 1900 upvotes. A study of the regexes on StackOverflow and their
intersection with our ecosystem-scale datasets would be interesting
follow-up work. (2) Software bundling, because of disincentives in
the JavaScript community to having many explicit dependencies. In
one case, we identified 43 modules whose npm artifacts contained
the source of another module with an SL regex. (3) Many JavaScript
libraries wish to be context-agnostic, and excerpt core Node.js li-
braries to ensure that they are always available. For example, one
of the SL path-parsing regexes from Node v4 appeared in over 2,000
npm modules.

8 THREATS TO VALIDITY

Construct Validity.One threat is that we used automated SL regex
detectors to identify SL regexes. Our study may thus be affected by
incorrectly-labeled regexes. We address false positives by dynam-
ically confirming the report from the SL regex detectors (§4.1.1).
False negatives are also possible: we report only the SL regexes that
can be detected by existing techniques (e.g., none of them considers
the use of inherently super-linear features like backreferences). This
means that the SL regexes we identified represent a lower bound on
the number of such regexes in practice.

Another threat is that we do not identify all the possible ap-
plication domains in which regexes could be applied. Our goal in

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA J.C. Davis, C.A. Coghlan, F. Servant, and D. Lee

studying RQ3 was to understand whether SL regexes appear across
application domains, and whether different application domains are
affected differently by them. Our precise but otherwise potentially
incomplete set of application domains still allowed us to answer
these questions in the affirmative.

Finally, an SL regex is only one of the criterion for a ReDoS attack
(§2.3). We focused on identifying ReDoS vulnerabilities, and did not
confirm that they are exploitable; we did not perform taint analysis
to confirm that malign input could reach these regexes, nor did we
attempt to differentiate between modules intended for the server
side vs. the client side.

Internal Validity.We developed several novel analyses to answer
our research questions. Incorrect implementations of the regex
semantic meaning labeler (§4.3) and the anti-pattern tests (§5.1)
would skew our findings. To address the threat to our regex labeler,
we validated its precision over 17 iterations. Our anti-pattern tests
identified the use of anti-patterns in over 80% of the SL regexes,
indicating agreement with the SL regex detectors in our ensemble,
and agreeing with the intuition that anti-patterns are a necessary
condition for super-linear behavior.

External Validity. A threat to external validity concerns whether
our findings will hold for other ecosystems and scenarios. We ad-
dressed this threat by studying two popular programming lan-
guages with large ecosystems. As the general theme of our findings
was consistent across these ecosystems, we expect our results to
generalize to other ecosystems as well.

9 RELATEDWORK
Here is a brief history of ReDoS. Crosby first suggested that regexes
with large complexity could be a DoS vector [22], as a precursor
to his influential work with Wallach on algorithmic complexity
attacks [23]. The first CVE report of ReDoS appeared in 2007 (CVE-
2007-2026), and the notion was popularized by OWASP and Check-
marx in 2009 [39]. Two primitive SL regex detectors were released
in the early 2010s: Microsoft’s SDL Regex Fuzzer tool used input
fuzzing to try to trigger super-linear behavior, while substack’s
safe-regex used the star height anti-pattern [44]. These detectors
were followed by a succession of more rigorous academic works
on SL regex detection: Kirrage, Rathnayake, and Thielecke [33]
and Rathnayake and Thielecke [37] developed rxxr2 in 2013-2014,
Weideman et al. released regex-static-analysis in 2016 [48, 49]
and Wustholz et al. published rexploiter in 2017 [52]. Our work
takes the logical next step: we measured the extent to which SL
regexes occur in real-world software and examined the adoption
and effectiveness of repairs.

In terms of ecosystem-scale ReDoS analyses, the closest work to
ours is industrial, not academic. In 2014, Liftsecurity.io performed
an ecosystem-scale study of SL regexes in npm [5]. They relied
on safe-regex to scan 100,000 modules and only identified 56 SL
regexes affecting 120 modules. Their much smaller incidence rate is
not surprising — safe-regex’s Star Height heuristic will not capture
thousands of polynomial SL regexes (Table 4).

Staicu and Pradel recently demonstrated mappings from SL
regexes in npm modules to ReDoS vulnerabilities in hundreds of
popular websites [43], suggesting that the myriad SL regexes we
found indicate many other ReDoS vulnerabilities.

An interesting line of work from van der Merwe, Weideman, and
Berglund proposes automatic regex revising techniques to replace
SL regexes with equivalent safe ones [47]. This work is not yet
fully developed but promises to provide developers with a useful
tool to address SL regexes. We note that these authors restricted
themselves to revisions that would match the exact same language,
while developers rarely did so in the fixes we studied. We suggest
combining this automatic revision approach with an understanding
of semantic meanings (§4.3) and anti-patterns (§5.1) as a promising
direction for future research.

More generally, the study of regexes from a software engineering
perspective was pioneered by Chapman and Stolee. They studied
the use of regexes in a small sample of Python applications [18], and
our study of modules and core libraries complements thier work.
With Wang, they have also explored possible factors affecting regex
comprehension [19].

10 REPRODUCIBILITY
An artifact containing our regex datasets and our analysis code is
available at https://doi.org/10.5281/zenodo.1294300.

11 CONCLUSION
We believe nearly every practicing software developer has used
regular expressions. As it turns out, many developers have also writ-
ten super-linear regexes and introduced performance or security
concerns in doing so. We found thousands of super-linear regexes
in our analyses of the Node.js (JavaScript) and Python ecosystems,
affecting over 10,000 modules as well as the core libraries of Node.js
and Python.

We have found that ReDoS is not a niche concern, but rather a
common security vulnerability. As such, it merits significant addi-
tional investment from researchers and practitioners. Much work
remains: in the short term, to gauge developer awareness and im-
prove educational resources, and in the long term to implement
and evaluate effective prevention and resolution mechanisms.

ACKNOWLEDGMENTS
We thank the ESEC/FSE reviewers for their feedback. E.R.Williamson
was helpful in discussions on backtracking behavior. K. Yavine and
D. Grander of Snyk.io did yeoman’s work assisting us in disclosing
ReDoS vulnerabilities. A. Kazerouni, J. Phillips, and the VT Systems
Reading Group gave helpful feedback on versions of this paper. This
work was supported in part by the National Science Foundation
under grant CNS-1814430 and a Google Faculty Research Award.

REFERENCES
[1] 2004. taskset – set or retrieve a process’s CPU affinity. https://web.archive.org/

web/20180801003855/https://linux.die.net/man/1/taskset.
[2] 2005. Django: The web framework for perfectionists with deadlines. https:

//web.archive.org/web/20180801003925/https://www.djangoproject.com.
[3] 2012. What’s new in the .NET Framework 4.5. https://web.archive.org/

web/20180801003332/https://docs.microsoft.com/en-us/dotnet/framework/
whats-new/index.

[4] 2014. Regexper. https://web.archive.org/web/20180801004409/https://regexper.
com/.

[5] 2014. Regular Expression DoS and Node.js. https://web.archive.
org/web/20170131192028/https://blog.liftsecurity.io/2014/11/03/
regular-expression-dos-and-node.js.

https://doi.org/10.5281/zenodo.1294300
https://web.archive.org/web/20180801003855/https://linux.die.net/man/1/taskset
https://web.archive.org/web/20180801003855/https://linux.die.net/man/1/taskset
https://web.archive.org/web/20180801003925/https://www.djangoproject.com
https://web.archive.org/web/20180801003925/https://www.djangoproject.com
https://web.archive.org/web/20180801003332/https://docs.microsoft.com/en-us/dotnet/framework/whats-new/index
https://web.archive.org/web/20180801003332/https://docs.microsoft.com/en-us/dotnet/framework/whats-new/index
https://web.archive.org/web/20180801003332/https://docs.microsoft.com/en-us/dotnet/framework/whats-new/index
https://web.archive.org/web/20180801004409/https://regexper.com/
https://web.archive.org/web/20180801004409/https://regexper.com/
https://web.archive.org/web/20170131192028/https://blog.liftsecurity.io/2014/11/03/regular-expression-dos-and-node.js
https://web.archive.org/web/20170131192028/https://blog.liftsecurity.io/2014/11/03/regular-expression-dos-and-node.js
https://web.archive.org/web/20170131192028/https://blog.liftsecurity.io/2014/11/03/regular-expression-dos-and-node.js

The Impact of ReDoS in Practice ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

[6] 2017. Babylon: Babylon is a JavaScript parser used in Babel.
http://web.archive.org/web/20171231170138/https://github.com/babel/babel/
tree/master/packages/babylon.

[7] 2017. How to validate an email address using a regular expression? https:
//web.archive.org/web/20180801004019/https://stackoverflow.com/questions/
201323/how-to-validate-an-email-address-using-a-regular-expression.

[8] 2017. regexp-tree: Regular expressions processor in JavaScript. https:
//web.archive.org/web/20180801004201/https://github.com/DmitrySoshnikov/
regexp-tree.

[9] 2018. cloc: Count Lines of Code. https://web.archive.org/web/20180801003246/
https://github.com/AlDanial/cloc.

[10] 2018. Common Vulnerabilities and Exposures. https://cve.mitre.org.
[11] 2018. Go documentation: regexp. https://web.archive.org/web/20180801003600/

https://golang.org/pkg/regexp/.
[12] 2018. npm. https://web.archive.org/web/20180801003712/https://www.npmjs.

com.
[13] 2018. PyPI – the Python Package Index. https://web.archive.org/web/

20180801003833/https://pypi.org/.
[14] 2018. Rust documentation: regex. https://web.archive.org/web/20180801003203/

https://docs.rs/regex/1.0.2/regex/.
[15] Alasdair Allan. 2012. Learning iOS Programming: From Xcode to App Store. O’Reilly

Media.
[16] Adam Baldwin. 2016. Regular Expression Denial of

Service affecting Express.js. http://web.archive.org/
web/20170116160113/https://medium.com/node-security/
regular-expression-denial-of-service-affecting-express-js-9c397c164c43.

[17] Martin Berglund, Frank Drewes, and Brink Van Der Merwe. 2014. Analyzing
Catastrophic Backtracking Behavior in Practical Regular Expression Matching.
EPTCS: Automata and Formal Languages 2014 151 (2014), 109–123. https://doi.
org/10.4204/EPTCS.151.7

[18] Carl Chapman and Kathryn T Stolee. 2016. Exploring regular expression usage
and context in Python. International Symposium on Software Testing and Analysis
(ISSTA) (2016). https://doi.org/10.1145/2931037.2931073

[19] Carl Chapman, Peipei Wang, and Kathryn T Stolee. 2017. Exploring Regular
Expression Comprehension. In Automated Software Engineering (ASE).

[20] Checkmarx. 2016. The Node.js Highway - Attacks are at Full Throttle. In BlackHat
USA. https://www.youtube.com/watch?v=-HzCUZDLXTc

[21] Russ Cox. 2007. Regular ExpressionMatching Can Be Simple And Fast (but is slow
in Java, Perl, PHP, Python, Ruby, ...). https://swtch.com/~rsc/regexp/regexp1.html

[22] Scott Crosby. 2003. Denial of service through regular expressions. USENIX
Security work in progress report (2003).

[23] Scott A Crosby and Dan S Wallach. 2003. Denial of Service via Algorithmic
Complexity Attacks. In USENIX Security.

[24] James C Davis, Eric R Williamson, and Dongyoon Lee. 2018. A Sense of Time
for JavaScript and Node.js: First-Class Timeouts as a Cure for Event Handler
Poisoning. In USENIX Security Symposium (USENIX Security).

[25] Erik DeBill. 2010. Module Counts. http://web.archive.org/web/20180114183225/
http://www.modulecounts.com/.

[26] Stack Exchange. 2016. Outage Postmortem. http://web.archive.
org/web/20180801005940/http://stackstatus.net/post/147710624694/
outage-postmortem-july-20-2016.

[27] Maximiliano Firtman. 2013. Programming the Mobile Web: Reaching Users on
iPhone, Android, BlackBerry, Windows Phone, and more. O’Reilly Media.

[28] Michael Fitzgerald. 2012. Introducing regular expressions. "O’Reilly Media, Inc.".
[29] Jeffrey EF Friedl. 2002. Mastering regular expressions. O’Reilly Media, Inc.
[30] Patrice Godefroid. 1995. Partial-Order Methods for the Verification of Concur-

rent Systems. Ph.D. Dissertation. University of Liege. https://doi.org/10.1007/
3-540-60761-7

[31] Jan Goyvaerts. 2006. Regular Expressions: The Complete Tutorial. Lulu Press.

[32] Jan Goyvaerts and Steven Levithan. 2012. Regular expressions cookbook. O’Reilly
Media, Inc.

[33] James Kirrage, Asiri Rathnayake, and Hayo Thielecke. 2013. Static Analysis for
Regular Expression Denial-of-Service Attacks. In International Conference on
Network and System Security (NSS). 35–148.

[34] Konstantinos Manikas and Klaus Marius Hansen. 2013. Software ecosystems-
A systematic literature review. Journal of Systems and Software 86, 5 (2013),
1294–1306. https://doi.org/10.1016/j.jss.2012.12.026

[35] A Ojamaa and K Duuna. 2012. Assessing the security of Node.js platform. In
7th International Conference for Internet Technology and Secured Transactions
(ICITST).

[36] Theoolos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. 2017.
SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity
Vulnerabilities. In Computer and Communications Security (CCS). https://doi.org/
10.1145/3133956.3134073

[37] Asiri Rathnayake and Hayo Thielecke. 2014. Static Analysis for Regular Expression
Exponential Runtime via Substructural Logics. Technical Report.

[38] Randy J. Ray and Pavel Kulchenko. 2002. Programming Web Services with Perl.
O’Reilly Media.

[39] Alex Roichman and Adar Weidman. 2009. VAC - ReDoS: Regular Expression
Denial Of Service. Open Web Application Security Project (OWASP) (2009).

[40] Michael Sipser. 2006. Introduction to the Theory of Computation. Vol. 2. Thomson
Course Technology Boston.

[41] Snyk.io. 2018. Vulnerability DB. http://web.archive.org/web/20180801010155/
https://snyk.io/vuln.

[42] Henry Spencer. 1994. A regular-expression matcher. In Software solutions in C.
35–71.

[43] Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web: A Study
of ReDoS Vulnerabilities in JavaScript-based Web Servers. In USENIX Security
Symposium (USENIX Security)2. https://www.npmjs.com/package/safe-regexhttp:
//mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf

[44] substack. 2013. safe-regex. https://web.archive.org/web/20180801003748/https:
//github.com/substack/safe-regex.

[45] Bryan Sullivan. 2010. Security Briefs - Regular Expression Denial of Service Attacks
and Defenses. Technical Report. https://msdn.microsoft.com/en-us/magazine/
ff646973.aspx

[46] Ken Thompson. 1968. Regular Expression Search Algorithm. Communications of
the ACM (CACM) (1968). https://www.fing.edu.uy/inco/cursos/intropln/material/
p419-thompson.pdf

[47] Brink Van Der Merwe, Nicolaas Weideman, and Martin Berglund. 2017. Turning
Evil Regexes Harmless. In SAICSIT. https://doi.org/10.1145/3129416.3129440

[48] Nicolaas Weideman, Brink van der Merwe, Martin Berglund, and Bruce Wat-
son. 2016. Analyzing matching time behavior of backtracking regular expres-
sion matchers by using ambiguity of NFA. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 9705. 322–334.

[49] Nicolaas Hendrik Weideman. 2017. Static Analysis of Regular Expressions. MS.
Stellenbosch University.

[50] Wikipedia contributors. 2018. .NET Framework version history — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=.NET_
Framework_version_history&oldid=851937435. [Online; accessed 1-August-
2018].

[51] Wikipedia contributors. 2018. Regular expression — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Regular_expression&
oldid=852858998. [Online; accessed 1-August-2018].

[52] Valentin Wustholz, Oswaldo Olivo, Marijn J H Heule, and Isil Dillig. 2017. Static
Detection of DoS Vulnerabilities in Programs that use Regular Expressions. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS).

http://web.archive.org/web/20171231170138/https://github.com/babel/babel/tree/master/packages/babylon
http://web.archive.org/web/20171231170138/https://github.com/babel/babel/tree/master/packages/babylon
https://web.archive.org/web/20180801004019/https://stackoverflow.com/questions/201323/how-to-validate-an-email-address-using-a-regular-expression
https://web.archive.org/web/20180801004019/https://stackoverflow.com/questions/201323/how-to-validate-an-email-address-using-a-regular-expression
https://web.archive.org/web/20180801004019/https://stackoverflow.com/questions/201323/how-to-validate-an-email-address-using-a-regular-expression
https://web.archive.org/web/20180801004201/https://github.com/DmitrySoshnikov/regexp-tree
https://web.archive.org/web/20180801004201/https://github.com/DmitrySoshnikov/regexp-tree
https://web.archive.org/web/20180801004201/https://github.com/DmitrySoshnikov/regexp-tree
https://web.archive.org/web/20180801003246/https://github.com/AlDanial/cloc
https://web.archive.org/web/20180801003246/https://github.com/AlDanial/cloc
https://cve.mitre.org
https://web.archive.org/web/20180801003600/https://golang.org/pkg/regexp/
https://web.archive.org/web/20180801003600/https://golang.org/pkg/regexp/
https://web.archive.org/web/20180801003712/https://www.npmjs.com
https://web.archive.org/web/20180801003712/https://www.npmjs.com
https://web.archive.org/web/20180801003833/https://pypi.org/
https://web.archive.org/web/20180801003833/https://pypi.org/
https://web.archive.org/web/20180801003203/https://docs.rs/regex/1.0.2/regex/
https://web.archive.org/web/20180801003203/https://docs.rs/regex/1.0.2/regex/
http://web.archive.org/web/20170116160113/https://medium.com/node-security/regular-expression-denial-of-service-affecting-express-js-9c397c164c43
http://web.archive.org/web/20170116160113/https://medium.com/node-security/regular-expression-denial-of-service-affecting-express-js-9c397c164c43
http://web.archive.org/web/20170116160113/https://medium.com/node-security/regular-expression-denial-of-service-affecting-express-js-9c397c164c43
https://doi.org/10.4204/EPTCS.151.7
https://doi.org/10.4204/EPTCS.151.7
https://doi.org/10.1145/2931037.2931073
https://www.youtube.com/watch?v=-HzCUZDLXTc
https://swtch.com/~rsc/regexp/regexp1.html
http://web.archive.org/web/20180114183225/http://www.modulecounts.com/
http://web.archive.org/web/20180114183225/http://www.modulecounts.com/
http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1016/j.jss.2012.12.026
https://doi.org/10.1145/3133956.3134073
https://doi.org/10.1145/3133956.3134073
http://web.archive.org/web/20180801010155/https://snyk.io/vuln
http://web.archive.org/web/20180801010155/https://snyk.io/vuln
https://www.npmjs.com/package/safe-regex http://mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf
https://www.npmjs.com/package/safe-regex http://mp.binaervarianz.de/ReDoS_TR_Dec2017.pdf
https://web.archive.org/web/20180801003748/https://github.com/substack/safe-regex
https://web.archive.org/web/20180801003748/https://github.com/substack/safe-regex
https://msdn.microsoft.com/en-us/magazine/ff646973.aspx
https://msdn.microsoft.com/en-us/magazine/ff646973.aspx
https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf
https://www.fing.edu.uy/inco/cursos/intropln/material/p419-thompson.pdf
https://doi.org/10.1145/3129416.3129440
https://en.wikipedia.org/w/index.php?title=.NET_Framework_version_history&oldid=851937435
https://en.wikipedia.org/w/index.php?title=.NET_Framework_version_history&oldid=851937435
https://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=852858998
https://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=852858998

	Abstract
	1 Introduction
	2 Background
	2.1 Super-Linear (SL) Regex Engines
	2.2 Example: An SL Regex in Python Core
	2.3 Using SL Behavior for ReDoS
	2.4 Mechanisms to Prevent SL Behavior

	3 Research questions
	4 Theme 1: Understanding the incidence of ReDoS in practice
	4.1 RQ1: How Prevalent are SL Regexes in Practice?
	4.2 RQ2: How Strongly Vulnerable are the SL Regexes?
	4.3 RQ3: Which Application Domains do SL Regexes Affect?

	5 Theme 2: Preventing ReDoS
	5.1 RQ4: Do SL Regex Anti-Patterns Signal SL Regexes?

	6 Theme 3: Fixing ReDoS
	6.1 RQ5: How Have Developers Fixed ReDoS Vulnerabilities?
	6.2 RQ6: How Would Developers Fix ReDoS Vulnerabilities if They Knew All of the Currently-Applied Approaches?
	6.3 RQ7: How Effective are the Fixes that Developers Adopt?

	7 Discussion and Recommendations
	8 Threats to Validity
	9 Related work
	10 Reproducibility
	11 Conclusion
	References

