
Poster: Understanding and Leveraging Developer Inexpertise
Lykes Claytor
Virginia Tech
frank8@vt.edu

Francisco Servant
Virginia Tech

fservant@vt.edu

ABSTRACT
Existing work in modeling developer expertise assumes that devel-
opers reflect their expertise in their contributions and that such
expertise can be analyzed to provide support for developer tasks.
However, developers also make contributions in which they reflect
their inexpertise such as by making mistakes in their code. We
refine the hypotheses of the expertise-identification literature by
proposing developer inexpertise as a factor that should be modeled
to automate support for developer tasks.

CCS CONCEPTS
• Information systems→Recommender systems;Expert search;

KEYWORDS
expertise modeling, expert recommendation, history mining
ACM Reference format:
Lykes Claytor and Francisco Servant. 2018. Poster: Understanding and
Leveraging Developer Inexpertise. In Proceedings of ICSE ’18 Companion,
Gothenburg, Sweden, May 27-June 3, 2018, 2 pages.
https://doi.org/10.1145/3183440.3195029

1 INTRODUCTION
Understanding the different topics for which individual develop-
ers have expertise allows software development teams to make
informed decisions when assigning tasks or creating groups to
work on software projects. Past work has looked into modeling
developer expertise to support various software engineering tasks,
e.g., bug triaging [1], code review [2], or code collaboration [3].

Existing techniques for automated modeling of software devel-
opment expertise share the assumption that every contribution
that a developer makes to a software project demonstrates their
expertise. Thus, these techniques analyze developer contributions
to software in order to model the aspects of a software project that
each developer knows well. However, sometimes developers make
mistakes, and some of their contributions might actually contain
evidence that they do not know a topic or aspect particularly well.

We propose the idea of modeling and analyzing developer in-
expertise — the opposite of expertise. While modeling developer
expertise allows us to understand which topics a developer knows
well, we hypothesize that modeling developer inexpertise will en-
able us to highlight the topics for which developers still do not have
a strong understanding, and for which they likely make mistakes.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3195029

Our proposed idea expands the hypotheses behind state-of-the-
art techniques. Existing techniques assume that all developer con-
tributions reflect expertise that developers gain from making such
contributions. We refine this assumption by studying whether some
developer contributions reflect inexpertise, i.e., lack of expertise.

Developer-inexpertisemodels and analysesmay enhance already-
existing expert-recommendation techniques. Existing techniques
model developer expertise according to how frequently develop-
ers modify or use files, classes, or terms in software. In existing
models, developer contributions can only increase their expertise
— not decrease it. Inexpertise data may be used to extend such
models so that they decrease developer expertise according to the
mistakes that they make. This new, extended model may refine
existing techniques by allowing them to avoid the recommendation
of developers for tasks for which they normally make mistakes.

More importantly, modeling developer inexpertise provides its
own set of new applications. The ability to automatically deter-
mine gaps in developer knowledge has uses beyond improving
expert-recommendation techniques. Inexpertise data could be used
to recommend useful pieces of documentation or educational mate-
rials a software engineer might want to read in order to improve
their skills. Additionally, new automatic techniques could flag con-
tributions containing terms with which the author has previously
shown inexpertise. Then, the development team would know that
they should pay extra attention to such contributions, since they are
more likely to contain a mistake than the average code contribution.

This paper motivates our idea of studying developer inexpertise,
proposes some interesting research questions that this research
area motivates, and discusses some applications of modeling and
analyzing developer inexpertise.

2 RELATEDWORK
McDonald and Ackerman [4] use the last change to determine the
expert for a file. Mockus and Herbsleb [5] recommend the developer
who made most changes to a file. Fritz et al. [3] consider additional
factors such as frequency of code reading. Other techniques recom-
mend developers to fix bugs represented by bug reports e.g., [1, 7]),
or to review code changes (e.g., [2, 6]. Anvik et al. [1] recommend
experts who have fixed similar bugs in the past Zanjani et al. [7]
recommend experts who have interacted with the affected code.

Balachandran [2] recommends code reviewers based on the lines
affected by the code change and nearby lines. Thongtanuam et al.
[6] recommend reviewers that changed similar file paths to the
reviewed change.

In contrast to past approaches to modeling developer expertise,
we propose to model developer inexpertise — the concepts for
which developers made mistakes — to feed automated techniques
to support developer tasks.



ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lykes Claytor and Francisco Servant

3 MOTIVATING EXAMPLE
We describe a motivating example for a case in which it would be
useful to automatically model and analyze developer inexpertise.

In this scenario, we have a software developer named Bob. Bob
is a contributor to an open source project, and frequently makes
contributions to a specific set of program modules. However, in
some cases, Bob needs to write code that interacts with other parts
of the program that deals with some domain-specific functionality,
which he has not had many chances to study or contribute to. Due
to Bob’s gaps in this domain-specific knowledge, his contributions
to these cross-cutting areas of the program often lead to defects that
slow down the application and that cause issues for users. Since
these defects are normally detected and studied after some time
has passed, and since Bob also sometimes introduces defects in
other areas of the program, he does not necessarily realize that his
changes that affect the topics for which he does not have a strong
expertise are significantly more error prone that his changes to
other parts of the program.

In a scenario like this one, an automated technique to model
and developer inexpertise would have been very useful to Bob and
his team. Such a tool could be integrated with the IDE to warn
Bob whenever he is working with code that deals with topics for
which he does not have a strong-enough expertise, and for which
he is more likely to make mistakes. Similarly, this technique could
also warn the team that specific parts of the program have been
affected by developer inexpertise and are more likely to contain
defects. With this new understanding, developers would know that
they should pay closer attention to the code that is more risky.
Furthermore, this technique could also let developers know about
terms and concepts for which they frequently make mistakes, so
they can increase their training about them.

4 RESEARCH QUESTIONS AND
PRELIMINARY FINDINGS

RQ1: Can we model the specific topics for which developers
have inexpertise? A fundamental step in the area of developer
inexpertise would be to be able to reliably model inexpertise. One
potential way of modeling developer inexpertise separately from
developer expertise would be from analyzing instances in which
developers clearly made mistakes, e.g., in fix-inducing code changes.
RQ2: Do developers make mistakes more often when work-
ing on their inexpertise topics? Once developer inexpertise has
been modeled, we would like to study whether developers make
significantly more mistakes when they are working with problems
that involve the topics for which they have already demonstrated
inexpertise. If this statement is true, then automated techniques
could be built that made recommendations based on this trend.
RQ3:Howdoes developer inexpertise change over time?Other
studies have observed that developer expertise changes over time,
e.g., [3], since as time goes on developers can forget things and fo-
cus on new expertise areas. It would be beneficial to study whether
and how developer inexpertise varies over time and, furthermore,
whether time is a factor that could transform developer expertise
into inexpertise.

Preliminary Findings. We have run some preliminary experi-
ments over open source projects to start understanding the factors
that demonstrate developer inexpertise. In our preliminary results,
we succeeded in identifying sets of terms for individual developers
for which they demonstrate their inexpertise, and which are dif-
ferent from the terms for which they demonstrate expertise. We
also observed, that over time, developers tend to repeat the usage
of some terms from one mistake to the next.

5 APPLICATIONS OF DEVELOPER
INEXPERTISE

One clear direction is the enhancement of already-existing expert
recommendation techniques.

Existing techniques could use an inexpertise model to lower the
expertise score for developers that demonstrated inexpertise with
the task that is currently being assigned. These techniques could
also recommend developers in such a way that inexperienced ones
are matched up with developers who can help educate them on the
gaps in their expertise.

Inexpertise models could also enable additional applications,
such as predicting when a developer is more likely to make a mis-
take. If a developer is writing a patch that uses terms or concepts
with which they have previously demonstrated inexpertise, the
IDE could warn them of their potential mistakes. Alternatively, the
code could be flagged so that the developer team checks it more
closely for defects. Finally, techniques based on inexpertise could
also automatically identify developers who may have introduced a
bug by comparing the bug report to developer inexpertise models.

Summing up, this unexplored avenue of research — automatically
modeling and analyzing developer inexpertise — could lead to many
valuable, high-impact applications.

REFERENCES
[1] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who should fix this bug?.

In International Conference on Software Engineering. 361–370.
[2] Vipin Balachandran. 2013. Reducing human effort and improving quality in peer

code reviews using automatic static analysis and reviewer recommendation. In
Software Engineering (ICSE), 2013 35th International Conference on. IEEE, 931–940.

[3] Thomas Fritz, Jingwen Ou, Gail C. Murphy, and Emerson Murphy-Hill. 2010. A
degree-of-knowledge model to capture source code familiarity. In International
Conference on Software Engineering. 385–394.

[4] David W. McDonald and Mark S. Ackerman. 2000. Expertise recommender: a flex-
ible recommendation system and architecture. In Computer Supported Cooperative
Work. 231–240.

[5] Audris Mockus and James D. Herbsleb. 2002. Expertise browser: a quantita-
tive approach to identifying expertise. In International Conference on Software
Engineering. 503–512.

[6] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and Ken-ichiMatsumoto. 2015. Who should review
my code? A file location-based code-reviewer recommendation approach for
modern code review. In Software Analysis, Evolution and Reengineering (SANER),
2015 IEEE 22nd International Conference on. IEEE, 141–150.

[7] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2015. Using
developer-interaction trails to triage change requests. In Proceedings of the 12th
Working Conference on Mining Software Repositories. IEEE Press, 88–98.


