
Developers’ Need for the Rationale of Code Commits:
An In-breadth and In-depth Study⋆

Khadijah Al Safwana,∗, Mohammed Elarnaotya,c and Francisco Servantb,a,∗,1

aDepartment of Computer Science, Virginia Tech, United States of America
bDepartamento de Teoría de la Señal y las Comunicaciones y Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, Madrid, Spain
cDepartment of computer science, Faculty of computers and artificial intelligence, Cairo university, Giza, Egypt

A R T I C L E I N F O
Keywords:
Software Changes Rationale
Software Evolution and Maintenance

A B S T R A C T
Communicating the rationale behind decisions is essential for the success of software engineering
projects. In particular, understanding the rationale of code commits is an important and often difficult
task. Although the software engineering community recognizes rationale need and importance,
there is a lack of in-depth study of rationale for commits. To bridge this gap, we apply a mixed-
methods approach, interviewing software developers and distributing two surveys, to study their
perspective of rationale for code commits. We found that software developers need to investigate code
commits to understand their rationale when working on diverse tasks. We also found that developers
decompose the rationale of code commits into 15 components, each is differently needed, found, and
recorded. Furthermore, we explored software developers’ experiences with rationale need, finding,
and recording. We discovered factors leading software developers to give up their search for rationale
of code commits. Our findings provide a better understanding of the need for rationale of code
commits. In light of our findings, we discuss and present our vision about rationale of code commits
practitioners’ documentation, tools support, and documentation automation. In addition, we discuss
the benefits of analyses that could arise from good documentation of rationale for code commits.

1. Introduction
The rationale of code commits is informally defined as

the answer to the question: “why was this code implemented
this way?” [18, 55]. However, software developers could
easily interpret this informal question in many different
ways, potentially as disparate as: “what is the purpose of
this code?” [49]; “why where [these changes] introduced?”
[27]; or “why was it done this way?” [55] — all of which
request different answers. In past studies, software develop-
ers mentioned all these different interpretations when asked
about rationale. Thus, we formed our intuition that it could
be decomposed into multiple components, each addressing
different aspects of the question.

In the scope of code changes, i.e., code commits, ra-
tionale is a major information need. Many research studies
convey the importance of understanding the rationale of
code commits. Rationale is the most common [18] and
important [79] information need to understand from code-
change history, and it is very frequently sought in developer
tasks [25, 59, 62, 26]. Unfortunately, it can also be quite
difficult to find an answer for it [79, 55]. We posit that a
fundamental step to supporting developers in the difficult
and important task of managing rationale of code commits
is to understand their need for rationale of code changes.

Efforts to study rationale in-depth have been carried
out in the context of design, decomposing it into various

⋆This paper is an extension of a conference research paper [66].
∗Corresponding author
∗∗Principal corresponding author

khsaf@vt.edu (K. Al Safwan); marnaoty@vt.edu (M. Elarnaoty);
francisco.servant@urjc.es (F. Servant)

ORCID(s):
1Some work performed while at Virginia Tech.

more-specific components [77]. In the context of software
maintenance, Burge et al. prescriptively propose some
questions that may answer rationale [16]. We, instead, take a
descriptive approach, i.e., we aim to discover how developers
decompose the rationale of code changes — as opposed to
conceptually and rigorously decomposing the concept.

With our developer-centric approach, our goal is to un-
derstand what developers mean by the rationale of code
changes, and their need for it in practice. First, we study
the context in which software developers need the ratio-
nale for code changes. We set out to discover the tasks
(RQ1) and the target code (RQ2) for which developers need
rationale of code changes. Second, we study the specific
pieces of information (RQ3) in which developers decompose
the rationale of code changes. Third, we study software
developers’ experiences (RQ4-7) when seeking rationale for
code changes. To understand these aspects of the rationale
of code changes in depth, we used developer interviews and
surveys. Other methods (e.g., mining software repositories)
could be applied to study different aspects (e.g., the extent to
which code commits fulfill the need for their rationale), but
our goal was to understand the developers’ need in depth.

We used a mixed-methods approach in our study, in-
volving interviews and surveys of software developers. This
strategy allowed us to qualitatively study in detail various as-
pects about the rationale of code commits (through rich one-
on-one conversations). Additionally, this strategy allowed us
to reach a larger number of participants once we defined a
more specific set of quantitative questions.

We found that software developers need the rationale
for code commits for various software development tasks
(and subtasks): programming, working on bugs, communi-
cation, tools, documentation, project management, testing,

Al Safwan, El Arnaoty and Servant: Preprint submitted to Elsevier Page 1 of 28

2

and specifications.. Because our information-needs study is
information-based (i.e., rationale), we discovered a much
more exhaustive list of tasks for which rationale for code
commits is needed than task-based (e.g., code review)
information-needs studies. To the best of our knowledge, the
need for rationale for code commits while working on the
subtasks postmortem bug analysis and deployment was not
known before our study. With our discovered tasks, efforts to
support rationale for code commits need can now be targeted
to improve rationale documentation in the proper context.

We discovered that software developers decompose the
rationale of code commits into 15 separate components
that they could seek when searching for rationale: goal,
need, benefits, constraints, alternatives, selected alternative,
dependencies, committer, time, location, modifications, ex-
planation of modifications, validation, maturity stage, and
side effects. Some of these reported components, e.g., com-
mitter and time, were not previously mentioned in studies
of rationale in other contexts, e.g., Tang et al. [77], and
were instead specific to the context of software maintenance.
Understanding which components developers seek in ratio-
nale is an important problem, since most developers reported
seeking it multiple times a week or more often, and spending
more than 20 minutes on finding it in hard cases.

Furthermore, we highlight software developers’ experi-
ences with rationale. We present human, team, and project
factors leading software developers to give up their search
for rationale. For example, changes in project personnel
make it hard for software developers to find the rationale
behind code changes. We also present components of ra-
tionale that are needed but not frequently found or rarely
recorded. Developers most struggled to find side effects and
alternatives, and they need to find them on average multiple
times per month and per year, respectively. Additionally, the
developers least often record: alternatives, selected alterna-
tive, constraints, and maturity stage, even if they need to find
them on average multiple times per year (alternatives) and
per month (remaining ones). These findings of developers’
experiences revealed areas of improvement in developers’
practices regarding the rationale of code commits.

Our findings have multiple implications for practition-
ers. Our decomposition of the rationale of code commits
provides: (1) a common language to use when discussing it,
which practitioners can use to (2) assess and (3) strengthen
the quality of their rationale sharing and documentation
processes. While we do not expect practitioners to document
all components in all situations, they now have an extensive
list of components to judge which ones are relevant for
each situation. Our findings also facilitate multiple lines of
research. Given the decomposition of rationale, the set of
tasks for which rationale is needed, and developers’ expe-
riences with rationale efforts could now be targeted to: (1)
better document, (2) develop support tools, and (3) automate
documenting rationale for code changes.

This paper extends our previously published paper [66],
adding three new research questions (RQ1, RQ2, and RQ6)
for which we collected new data and analyzed data that was

not analyzed in the conference paper. This paper provides
more breadth and depth. We cover more breadth by ex-
ploring the context (RQ1 and RQ2) for which the rationale
of code commits is needed. For more depth, we extend
our study of developers’ experience with rationale of code
commits by investigating the factors (RQ6) that make them
give up their search for it. The remaining research questions
in this paper remain the same as in the conference paper.
They analyze the same data and provide the same results.
They correspond as follows: RQ3 corresponds to previous
RQ2, RQ4 corresponds to previous RQ1, RQ5 corresponds
to previous RQ3, and RQ7 corresponds to previous RQ4. We
also illustrate this in Figure 1: we represent the new research
questions in blue and the old ones in grey.
2. Related Work

Existing work highlights the importance of rationale
management throughout the software development life-cycle
[23, 16]. Thus, multiple approaches and systems have been
proposed to integrate rationale management in the process
of software requirements engineering, software design, and
software architecture [54, 30].

We focus on the rationale for code commits in the con-
text of software evolution and maintenance. In this context,
existing work studied part of the experience of developers
seeking the rationale of code changes, finding that it was
considered important and sometimes hard to find [79]. In
contrast, this manuscript presents the first in-depth study of
the decomposition of the rationale of code changes into mul-
tiple components, and the experience of developers seeking
it and its individual components. We also identified an
extensive list of the tasks in which developers need to learn
the rationale of code commits.

In the following sections, we discuss the related work in
several areas:
2.1. Rationale Management in Software

Requirements, Design, and Architecture
Multiple extensions of requirements models were pro-

posed to encourage the capture of rationale within them
[7, 45]. In addition to these models, tools have been proposed
to manage rationale of software requirements [54, 39, 6].

Many schemes have also been proposed to capture de-
sign and architecture rationale. The schemes can be di-
vided into two categories: decision-centric e.g., Lee and
Lai [56] and usage-centric approaches e.g., Burge et al.
[16]. The decision-centric approaches [61, 77] focus on cap-
turing the rationale as a decision-making process utilizing
Toulmin’s model of argumentation [80] and Rittel’s Issue-
Based Information System (IBIS) [51]. The usage-centric
approaches focus on capturing rationale without represent-
ing the decision-making process [30, 81, 33, 77].

The usage-centric approaches “recognize that organiz-
ing rationale around decisions is not the best way to elicit
and characterize some of the rationale needed for making
appropriate design decisions” [16]. Jarczyk et al. provided a
survey of the systems developed to support design rationale,

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

3

all of which were based on Toulmin’s model or IBIS [40].
Design rationale has also been supported by multiple tools
[34, 15], which can help detect inconsistencies, omissions,
and conflicts [78]. Other more recent tools focus on cap-
turing design rationale from software artifacts like IRC
discussions [4, 3, 5], or user reviews [52]. Our study, in turn,
focuses on the rationale in software maintenance.
2.2. Rationale in Software Evolution and

Maintenance
This section discusses the related work in which ratio-

nale of code changes were prescriptively decomposed and
discovered to be a major information need.
2.2.1. Components of the Rationale of Code Changes

Burge et al. prescriptively enumerate a few questions
that may answer rationale in software maintenance [16].
We, in turn, provide a descriptive model of rationale in
the context of software maintenance, from the perspective
of what developers need to find when they seek it. Our
descriptive approach extends Burge et al. ’s prescriptive
approach as we discovered more questions that may answer
rationale in software maintenance. For example, our change
objective questions (What did you want to achieve?, Why
did you need to achieve that?, and What is the benefit of
what you want to achieve?) were not mentioned in Burge
et al. study. Our extended set of questions cover all of Burge
et al. prescriptively enumerated questions. Because our set
of questions is descriptive of the developers’ needs while
seeking and finding rationale for code changes, we believe
these questions will help the finding and recording activities.
2.2.2. Tasks that need the Rationale of Code Changes

Past research focused on discovering various developer
information needs within a given developer task (e.g., col-
laborating [49], understanding code [57], understanding bug
reports [14], understanding the life of bugs [8], or reviewing
code [59]), and uncovered a breadth of aspects about them,
such as how early [14] or frequently [57] each piece of
information was needed. Our goal is instead to discover
the tasks in which this particularly important information
need (the rationale for code commits) exists (i.e., our study
takes the opposite direction), and we study various aspects
about it. Our results in this theme validate the findings of
some previous studies, since we found that the rationale
of code changes was needed in learning [16], code review
[59, 62, 26], and mentoring [20].

Tao et al. prescriptively proposed a list of seven “de-
velopment scenarios” (e.g., refactoring, developing new fea-
tures, and fixing bugs) in which they expected developers to
need to understand code changes. They asked developers to
choose which ones they encountered most often, and found
that the most often encountered one was “reviewing others’
changes” [79]. Our work had a different goal: to discover the
tasks for which developers need to understand the rationale
of code changes, as stated by developers, i.e., in a descriptive
fashion. As a result, we discovered a much more exhaustive
list: we observed that developers needed to understand the

rationale of code changes in eight tasks and 25 sub-tasks (as
opposed to Tao et al. ’s seven scenarios).
2.2.3. Experience with the Rationale of Code Changes

Studies involving software history and developers’ infor-
mation needs in the last decade establish a strong demand
for rationale [16, 18, 27, 79, 49, 55, 64, 59, 25, 57, 76, 62,
26, 20]. Our work is motivated by these empirical studies
highlighting the importance of rationale for code commits.

The most closely related study to ours is Tao et al. ’s
[79]. Tao et al. found that the most important information
need for understanding code changes is rationale, which is
sometimes easy and sometimes difficult. We replicated these
two questions (importance and difficulty) of their study. We
also studied additional questions in three additional contexts:
needing, finding, and recording rationale. Our study vali-
dates their results since our participants reported similar rat-
ings for the importance and difficulty of finding the rationale
of code changes. This similarity of results also shows that we
studied a similar population of developers.

Our study extends Tao et al. ’s by finding the individual
pieces of information that compose rationale; the experi-
ences of developers needing, finding, and recording those
individual pieces; and recommendations to improve their
documentation. In particular, this finer level of granularity
(i.e., rationale of code commits) enables us to provide a
possible explanation for one of the main phenomena ob-
served by Tao et al. : that rationale is easy to find when
it is well documented. We posit that rationale is deemed well
documented when it contains the specific components that
the developer is seeking at that moment.
3. Research Questions

Our empirical study answers seven research questions on
three themes.
3.1. Theme 1: Tasks with Rationale Need

We aim to understand some of the contexts under which
the rationale of code commits is needed.

RQ1: What are the tasks in which software developers
need to find the rationale for code commits? Discovering
the larger set of tasks in which rationale for code commits is
needed will enable researchers to tailor their support to the
context of each task. While the rationale for code commits
has been identified as a need in previous task-specific studies
(e.g., during code review [62]), an exhaustive list of of tasks
in which developers needed it is still unknown.
Finding: Our study participants need to find the rationale
for code commits while working on diverse software
development tasks (Table 2 and Fig. 3A).

RQ2: How often do developers seek rationale of their
team’s internal code vs. others’ code? Our intuition is
that developers may seek the rationale for code commits of
internal and external code outside their team. If our intuition
is validated, future research efforts (e.g., rationale retrieval
support) should accommodate for the fact that developers
may or may not own the code for which they seek rationale.

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

4

Finding: Our study participants seek rationale of code
commits for both internal and external code (Fig. 3B).
However, we observed tasks where only internal/external
code commits rationale is sought (Fig. 3A).

3.2. Theme 2: Components of Rationale
We aim to discover an extensive set of rationale for

code commits components that developers believe would
compose a high-quality detailed description.

RQ3: Which components do software developers de-
compose the rationale of code commits into? A model of
rationale for code commits will inform developers wanting
to improve their documentation of rationale of code commits
— whether they aim to document it fully or more thoroughly.
Finding: Our study participants decomposed the rationale
of code commits into 15 different components (Table 3). We
categorized the components into four themes; the change
objective, design, execution, and evaluation.

3.3. Theme 3: Experience with Rationale
We aim to explore software developers’ experience need-

ing, finding, and recording the rationale of code commits.
RQ4: What is the experience of developers needing,

finding, and recording the rationale of code commits? We
investigated this research question to understand the effort
developers dedicate to seek and document the rationale
of code commits. Tao et al. discovered that finding the
rationale of code commits is very important, and it is easy or
hard to find depending on how well-documented it is [79].
We replicate those two questions of their study, and extend
it by asking developers five additional questions in three
different contexts: needing, finding, and recording rationale.
Finding: The majority of our study participants reported
needing the rationale of code commits relatively frequently:
multiple times per week or more often (Fig. 4A).
Finding: Our study participants reported that rationale of
code commits is found often or almost always, with neutral
difficulty of finding, and relatively low average search time.
However, in the hard search cases, our participants could
spend more than 30 minutes searching for the rationale of
code commits (Fig. 4B).
Finding: Our participants reported similar recording and
finding frequencies of rationale for code commits (Fig. 4C),
which suggests that documentation efforts generally help
others in finding rationale.

RQ5: What is the experience of developers needing,
finding, and recording the individual components of the
rationale of code commits? We studied how developers
need, find, and record different components differently. This
study will enable developers to improve their documentation
of rationale efforts, e.g., by focusing on documenting the
most needed or most hard-to-find components.

Finding: Our study participants’ most needed and important
components of rationale for code commits are the change
modifications, goal, location, need, committer, and time. (Fig.
5).
Finding: Our study participants’ most hard-to-find
components of rationale for code commits are the change
alternatives, side effects, constraints, dependency, selected
alternative, benefits, and validation. (Fig. 5).

RQ6: What makes software developers give up their
search for rationale of code commits? We wanted to dis-
cover issues that may limit software developers from effec-
tively finding rationale of code commits. Identifying these
issues will inform future research efforts that are targeted to
support information needs’ finding
Finding: Our study participants give up their search of
rationale for code changes due to diverse eight reasons
(Table 4 and Fig. 6), which we categorize into project-
centric, human-centric, and team-centric factors.

RQ7: Would comparing the experience of developers
needing, finding, and recording the individual components
of the rationale of code commits with each other reveal
areas for improvement? We performed a cross-dimensional
study (i.e., comparing need vs. finding vs. recording compo-
nents) to investigate areas for improvement in current record-
ing and finding practices of rationale of code commits. Iden-
tifying gaps, e.g., between needed and recorded components,
will provide valuable recommendations for developers who
want to improve their documentation of rationale for code
commits.
Finding: Most rationale for code commits’ components are
not too frequently needed, but when they are needed they are
really hard to find. Our analysis shows that our participants
struggle most to find the side effects and alternatives
components (Fig. 7C).

4. Research Method
Our study uses a mixed-methods approach, combining

developer interviews and a survey. Mixed-methods have
been successfully employed in other studies of software
developers, e.g., [18, 79, 38, 73]. The developer interviews
allowed us to qualitatively discover details about multiple
aspects of the rationale of code commits, through rich one-
on-one conversations with developers. The surveys enabled
us to reach more participants and extend our quantitative
findings. Figure 1 outlines the method that we followed
in this study. In the following subsections, we present the
design of our interview, surveys, and participant recruitment.
4.1. Developer Interviews

We designed and refined our interview script through
five pilot sessions. We ran a first pilot interview at the
early stages of designing our interview script, in which we
asked general open questions about the rationale of code
changes. After the first pilot, we improved the interview

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

5

Figure 1: Research method summary

script, making it more structured, making the questions
more specific, and adding a preliminary model of rationale
(Table 1) to the script. Then, we ran a second pilot to test
these improvements. After it, we changed some questions’
wording to make them clearer. We ran the third and fourth pi-
lots with experienced and beginner developers respectfully.
Our goal was to test the new improvements and check the
time required for our interview. After the fourth pilot, we
finalized the interview kit (available in the research artifacts
package) by adding introductions to the different sections of
the interview script. Finally, we ran a fifth pilot to check for
the entire interview process. The process included: adver-
tisement, screening survey, scheduling, interview session,
and analysis of responses. After this pilot, we were ready
to recruit and interview participants.

Our interview consisted of three parts, one for each
research theme. The first part focused on finding the tasks
in which rationale of code commits is needed (RQ1). The
second part focused on discovering the components that
form the rationale of code commits (RQ3). The third part
aimed to understand the experiences of developers needing,
finding, and recording rationale of code commits (RQ4) and
its components (RQ5), and to understand when developers
give up searching it (RQ6). We study RQ7 by comparing
participants’ responses in different dimensions.

Theme 1: Tasks with Rationale Need. We started our
interviews by giving our participants the definition of ratio-
nale of code that is most common in the research literature,
i.e., the answer to “why is the code this way?” [18, 55].
We did this to ensure that all participants had a uniform
definition of the concept we discussed. Next, we asked them
to describe real situations in which they investigated a code
commit to understand its rationale. This way, they grounded
their answers in real experiences. We used their answers to
identify the tasks (RQ1-2) in which they needed rationale.
We provide more details about this analysis in Section 5.1.2.

Theme 2: Components of Rationale. Right after giving
our participants the definition of rationale of code commits
and asking them to describe real situations in which they
needed it, we asked them to decompose the rationale of code
commits into components. By asking this question after they
had been thinking about their own experiences searching for
the rationale of code commits, we intended to stimulate the
participants’ memories and set them in the right context, as
well as to maximize the number of components that they
would report. Then, we showed them a preliminary model
(see Table 1) of components of the rationale of code commits
that we created by studying the research literature — includ-
ing components to which researchers have referred as ratio-
nale [16, 49, 27, 74, 55]. We used this preliminary model as
a probe to prime our participants and get them in the right

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

6

frame of reference. We asked participants to critique and
extend the preliminary model — considering their previous
decomposition — to the extent that they believed necessary
to build a final model of all the components of the rationale of
code commits. For any component added by participants, we
asked them to describe it with a name, question, and example
answer. We presented the same preliminary model to all
participants — i.e., we did not show the modified models
to other interview participants.

Using the preliminary model as a probe served multiple
purposes. The preliminary model clarified the scope of our
study. It also allowed developers to discuss an extensive
set of components. We also believe that it allowed us to
reach saturation of answers much faster (interviewing fewer
participants) than if we had only relied on our participants’
experiences and decompositions — since situations in which
many components are needed simultaneously may be rare, or
because people’s memory is generally unreliable.

However, by using a preliminary model, we had the
risk of introducing confirmation bias [60]. We took multiple
measures to reduce this potential bias. First, we presented the
preliminary model neutrally, as “this model” — avoiding
potentially-biasing adjectives, such as “ours” or “prelim-
inary”. Second, we built it from the research literature,
reducing the risk of inserting our own opinions. Third, we
presented the preliminary model to participants only after
they had produced their own decomposition, without having
seen it. Fourth, we asked participants to consider their own
decomposition when critiquing and extending the prelimi-
nary model. We believe that we were successful with these
efforts since our final model of rationale of code commits
(see Table 3) is much more extensive than the preliminary
model (see Table 1). The preliminary model had only nine
components, whereas the final model has 15.

Theme 3: Experience with Rationale. Next, we asked
participants to rate their experiences needing, finding, and
recording rationale of code commits (RQ4) and its compo-
nents (RQ5) in Likert-scale-style questions. We also asked
an open question about what makes developers give up their
search for rationale (RQ6).
4.2. Survey I

Once we had identified the components of the rationale
of code commits through our interviews, we used a survey to
obtain more answers about developers’ experiences needing,
finding, and recording rationale of code commits and its
components. We refined our survey through four pilot ver-
sions, improving its clarity and the time required to complete
it. Our survey included the same Likert-scale-style questions
that we asked our interview participants for RQ4 and RQ5,
but the reference model of rationale of code commits that we
gave survey respondents was the final model resulting from
our analysis for RQ3. Our results for RQ4 and RQ5 include
the answers that we obtained both from our interviews and
the survey. We answer RQ7 by comparing the responses
obtained from RQ4 and RQ5 (from both interviews and
surveys) across multiple dimensions.

Table 1

Preliminary model of rationale of code commits

Component Component Expressed as a
Question

Literature
Refer-
ences

Goal What do you want to achieve? [16, 49]

Need Why do you need to achieve that? [27, 74]

Location What artifacts were changed? [16]

Modi�cations What speci�c changes were per-
formed in the artifacts?

[74, 49]

Alternatives What other alternatives did you
have?

[55]

Selected
alternative

Why did you make those speci�c
changes and not others?

[49, 55]

Validation How do those speci�c changes
achieve the goal?

[55, 16]

Bene�ts What is the bene�t of what you
want to achieve?

[49, 16]

Costs What risks could come from these
changes?

[49, 16]

4.3. Survey II
Once we had analyzed our interviews to identify the

tasks for which rationale is needed and the factors leading
our participants to give up their search of the rationale of
code commits, we created a short survey to obtain more
responses. We ran two pilots to test the new survey. The
pilots provided us with positive feedback and an under-
standing of the time required to complete the survey. Our
survey included an introduction and the same open questions
we asked our interview participants for RQ1 and RQ6. We
obtained results for RQ1 and RQ6 by analyzing the answers
that we obtained both from our interviews and Survey II.
4.4. Participants’ Recruitment

We used snowball sampling [12] to recruit participants
for our study, i.e., we asked them to refer our study to
their contacts. We advertised our study in mailing lists in
our university that covered software developers of diverse
experience, e.g., developing various university software sys-
tems, and graduate students with professional software de-
velopment experience. We also advertised it through public
channels and social media, e.g., developers’ communities on
Slack. We compensated interview participants with a $20
Amazon gift card and encouraged surveys participation by
raffling a $50 gift card. Figure 2 represents the demographics
of our interview, survey I, and survey II participants.

We interviewed 20 participants, after having discarded
three other interviews for various reasons: one participant
could not describe an example of seeking rationale of code
commits, another voluntarily expressed lack of experience
throughout the interview, and we found out that the last one
knew our interview materials.

We analyzed 26 survey I responses, after having dis-
carded two responses. We discarded two surveys that we
deemed as having been done carelessly, taking less than 10
minutes. We determined this cut-off point through our pilot

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

7

(A) Years of Experience
How many years of experience do you have with software

development?
.

(A-i) Software development

How many years of experience do you have with version control
systems?

(eg. Git, Github)

(A-ii) Revision control

(B) Types of experience
Select all that apply, your software

development experience is:

(B-i) Software development

Select all that apply, your experience with
version control systems is:

(B-ii) Revision control

What version control systems have you used
for software development?

(B-iii) Version control systems

Figure 2: Demographics of our interview and survey participants

surveys; we asked one pilot participant to fill the survey
carelessly and it took 10 minutes. We specifically asked the
interview participants not to fill the survey, eliminating the
chance of including duplicates in our results. For this survey,
we did not have a target number of responses. We kept the
survey open for a month, which resulted in 28 total responses
(before any filtration).

We analyzed 26 survey II responses after having dis-
carded 60 spam responses. We identified those spam re-
sponses since the spammers did not address the asked open
questions. Instead, for each response, the spammers sub-
mitted the same spam text answer with different contact
information. We believe a large number of spam responses
resulted from the compensation’s raffle odds of winning (1
in 50 chance). For this second survey, the advertisement
emphasized: “not to fill the survey if you have participated in
the study before”. Our target was to reach a similar number
to the previous survey I. We also kept the survey open for
a month, which resulted in 86 total responses (before any
filtration). Although we received/analyzed the same number
of responses as survey I, the participants are different, which
can be observed from the demographics figure (Figure 2).

5. Theme 1: Tasks with Rationale Need
5.1. RQ1: What are the tasks in which software

developers need to find the rationale for code
commits?

5.1.1. Research Method
We asked our (20) interview and (26) survey partici-

pants to describe a situation in which they needed to un-
derstand the rationale of a code commit. We analyzed their
responses qualitatively, using closed coding to extract the
task they were performing when they needed rationale of
code changes. All the authors of the paper were involved in
the coding. We reached saturation in our observed tasks in
interview 6 (of 20), and in our observed subtasks in survey
14 (of 26).

Analysis data: To base our observations on real de-
veloper experiences, we asked our participants (with an
open-ended question) to describe a real situation in which
they needed to understand the rationale of code commits.
Then, we analyzed their descriptions of these real-world
experiences to identify the tasks they were performing, in
which they experienced the need to know the rationale
of code commits. We specifically asked our participants:

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

8

Table 2

Tasks for which rationale for code commits is needed

Task Subtask Description Example (abstracted from participants' responses)

P
ro
g
ra
m
m
in
g

Reading Reading source code to understand various as-
pects about it, like design and features.

A Developer navigates through the commits of a project to understand
how a speci�c feature was implemented. The feature spans multiple
classes, and the developer �nds the commit that introduced the feature.
The developer reads and investigates the rationale of the changes.

Writing Writing source code to implement, refactor, im-
prove, and maintain the codebase.

A developer tries to break down a big function in a previous commit to
improve code reuse and testing. This leads the developer to ask questions
about the rationale of the changes.

Proofreading Reading source code to look for and solve issues
before submitting the code for review or boarding.

A developer proofreads code to make sure that variable names are clear
and informative before committing. This veri�cation of variable names
leads the developer to ask questions about the rationale of the changes.

Code Review-
ing

Reviewing source code as part of the code review
process.

A reviewer assesses the correctness and quality of the commit under
review, which requires understanding the rationale of the changes.

W
or
k
in
g
o
n
B
u
g
s

Reproducing Reproducing the situation in which a previously
reported bug was observed.

A developer tries to reproduce a race condition that happens occasionally.
The developer investigates the edge cases introduced in a previous commit
to guess when the race condition emerges, which leads the developer to
ask questions about the rationale of the changes.

Reporting Reporting the existence of a bug through for-
mal/informal communication methods to inform
the team members.

A developer discovers a bug in the codebase. To write a bug report for
it, the developer wants to refer to a particular commit as a suspect
of introducing the bug. In the e�ort to �nd the suspect commit, the
developer needs to understand the rationale of the investigated commits.

Triaging Evaluating a reported bug in terms of validity,
severity, urgency, and needed work, before assign-
ing a developer and a due �x time.

A Project Manager (PM) uses git blame to �gure out who introduced
code associated with a newly reported bug. In this e�ort, the PM needs
to understand the rationale of the multiple code changes that introduced
the buggy code.

Debugging Finding the source code that contains the bug
and �xing it.

A developer investigates his/her assigned bug, returns to the previous
commits, reads their code, re�ects on their rationale, understands how
the bug was introduced, and writes a �x.

Postmortem
Analysis ∗

Exploring and analyzing bugs, which might have
been already resolved, for research or to improve
productivity.

A PM studies the history of bugs to take preventive measures in the
future. In this e�ort, the PM needs to understand how these bugs were
introduced and the rationale behind the commits introducing them.

C
o
m
m
u
n
ic
a
ti
o
n

Learning Learning software best practices, conventions,
technologies, skills, and tools.

A researcher looks at the commits in the repository of an open-source ML
library to learn the undocumented mathematics of the ML approach. This
leads the developer to ask questions about the rationale of the changes
in the commits..

Coordinating Coordinating with members of the same or an-
other team to achieve a smooth integration.

Team A and team B are developing intersecting functionality. A developer
in team A looks at the commits of team B to avoid redundancy, sees how
team A can leverage parts of team B's code, and builds a common vision
of the two teams. In this process, developer A requires understanding the
rationale for some of the code changes by team B.

Mentoring Advising, guiding, and one-to-one teaching an-
other software developer.

A mentor looks at the mentee's code commits to check how well the
mentee practiced the design process, which leads the mentor to ask
questions about the rationale of the mentee's changes.

T
o
o
ls

Discovering Discovering various aspects about a tool or library
before adoption, such as its supported features,
popularity, and version history.

A software team is assessing whether to replace an existing component
with a new tool that is not fully documented yet. A developer goes through
the commits in the repository of the new tool to discover its capabilities
and to look for what the team needed. In this e�ort, the developer needs
to understand the rationale of the historical changes to the tool.

Installing Installing tools for developers to use for their
tasks.

A developer tries to install Docker Composer, and �nds it incompatible
with other installed tools. The developer �nds another repository that
previously encountered and solved the same problem. The developer then
tries to understand the rationale behind the changes that solved the
compatibility issue.

Using Using external tools that are not part of the
default API libraries, either by calling from code
or by impacting the execution environment.

A developer wants to use some GUI controls for the website they are
building. The developer looks at a similar code repository that uses these
controls and goes through its commits to learn how to use the GUI
controls. In this e�ort, the developer needs to understand the rationale of
code commits.

Building Compiling the source code, for the software to
launch and execute correctly.

A developer's code is not building successfully. The developer goes back
to an older version of the code to �gure out why the build was successful
at that time. The developer reads commits related to the problematic
code and re�ects on the rationale behind the changes before the build
started failing.

S
p
ec
i�
ca
ti
o
n
s Writing Writing speci�cations for functional or non-

functional requirements.
A development team wants to write a new speci�cation document to
improve the functionality of a system. The team decides to assign the
task to a new team member, to obtain a fresh perspective. While thinking
of possible improvements, the developer also studies old code commits to
understand how the system evolved. This e�ort takes the developer to
ask questions about the rationale of the changes.

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

9

Table 2

Tasks for which rationale for code commits is needed (cont.)

Task Subtask Description Example (abstracted from participants' responses)

D
o
cu
m
en
ta
ti
o
n

Searching Searching for reference documentation, tutorials,
commit messages, or any other sources of knowl-
edge that can help accomplish a task.

A developer looks for the documentation of a particular piece of code.
Because inline comments in the code are not clear, the developer runs
git blame to look for related commits. The developer reads the related
commit messages, and asks about the rationale of the code changes.

Writing Writing documentation of software artifacts (e.g.,
tutorials, inline code comments, or user-generated
JavaDoc) or the software process (e.g., commit
messages, process documents, or meeting min-
utes).

A developer works on writing a tutorial on how to use a library that the
team newly migrated to. Since the library documentation is not complete,
the developer looks at commits from the library repository, to understand
the rationale behind some of its functionality.

Reading Reading documentation of software artifacts or
software processes.

A developer reads the project changelog and �gures out where the support
for a library was added. The developer reads the commit to understand
the rationale of this change.

P
ro
je
ct

M
a
n
a
g
em

en
t

Checking out Checking out a software artifact to a separate
machine to work on it independently.

A developer pulls the changes made to an existing branch. The developer
looks the pull commits to understand their impact on his/her tasks and
eventually needs to understand the rationale behind these changes.

Reverting Reverting to an older version of the software
repository.

A developer inserts an incorrect commit on the project. The team does
not know exactly which commit is the problematic one. A developer goes
through the changed �les for each commit to backtrack the problem. The
developer needs to understand the rationale of various code changes in
the history to revert those inserted after the incorrect one.

Deploying ∗ Moving software from one controlled environment
to another, e.g., merging the development branch
into the production branch, releasing the software
to users, moving the software to a di�erent
environment on the customer end, or staging to
test the software using real data.

Some tests fail after moving the project from the development branch
to the production branch. A developer investigates the commits in the
repository and �nds a change in con�guration that might a�ect the
deployment. The developer reads the commit thoughtfully to �nd out
the goal of each con�guration �ag, and why they were introduced.

T
es
ti
n
g

Writing Writing test code that checks the behavior of the
software against its speci�cations.

A developer wants to write several tests for new functionality. The
developer studies the latest code commits to design his/her test strategy,
which also involves understanding the rationale of those changes.

Running Running tests to compare the behavior of the
software with its speci�cations.

Before a developer runs a test suite for a system, the developer looks
at the code commits to design his/her test strategy. In this e�ort, the
developer tries to understand the rationale behind the changes performed
to the code under test.

∗ Subtasks observed in this study that were not originally in the codebook (i.e., that were not observed in Begel and Simon's study of
developer tasks [10]).

“Tell me about one time in which you investigated a code
commit to understand its rationale. Why did you need to find
the rationale for that specific code commit? What was the
rationale for that specific code commit?”

Analysis method: We analyzed our participants’ answers
using closed coding [53] (also used in grounded theory [1])
— i.e., we coded our participants answers, labeling them
with categories according to a pre-existing set of codes (a
codebook). Studies of the tasks developers perform at their
job already exist in the research literature. So, we used a
closed codebook containing the list of developer tasks that
Begel and Simon captured when observing software devel-
opers at work [10]. We analyzed our participants’ responses
and labeled them with the task(s) from our codebook that
we identified they were performing. We allowed multiple
labels for each response, since our participants sometimes
mentioned being involved in multiple tasks when needing
the rationale of code changes.

First, the first two authors of the paper held a code
discussion session, to reach a common understanding of the
scope of each developer task and subtask in the codebook.
In this session, the first two authors produced a detailed
description for each task to delineate their difference better.
Then, the first two authors performed their own individual

coding. They labeled participant responses with multiple la-
bels in two scenarios: if multiple tasks were mentioned (e.g.,
“debugging” during “code review”), or when the response
could fit multiple tasks (i.e., if it was not clear which one
of the many were being described). In both situations, they
had discussions to agree on the set of labels that better fit
each response, i.e., the superset of tasks that were either
mentioned or would easily fit the description in the text.
They also allowed the addition of new tasks and subtasks
if they were not already in the codebook. The two authors
coded about 52% of the tasks similarly, and they coded about
59% of the subtasks similarly. Next, the two authors held
a joint focused-coding session and resolved disagreements.
After this joint coding session, the two authors resolved
most disagreements, but they still disagreed on coding two
participants’ responses. Therefore, the paper’s third author
provided additional independent coding for these two re-
sponses. Finally, after a final discussion that reviewed all
three codings, all authors agreed on how to label these two
responses.

Analysis evaluation: We reached saturation [67, 35] in
our identified set of tasks; our participants mentioned no new
tasks after the sixth interview (out of 20) and in our subtasks
after the 14th survey (out of 26).

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

10

5.1.2. Results
We show the list of tasks (and subtasks) during which

our participants needed to understand the rationale of code
commits in Table 2. Table 2 also contains a description
and example (abstracted from our participants’ responses)
that we created to clarify the scope of each task during our
coding sessions. Finally, we report in Figure 3A the relative
frequency with which each task and subtask was mentioned.

Our participants reported needing to understand the ra-
tionale of code changes in a wide diversity of software
development tasks: programming, working on bugs, commu-
nication, tools, documentation, project management, testing,
and specifications. Their responses covered all (8) tasks in
the codebook, and the majority of subtasks in it (23 out of
34 subtasks). Another signal of the wide diversity of tasks
requiring understanding the rationale of code changes is the
fact that a good portion of our participant responses (35%)
described multiple tasks.

For many of the reported tasks and subtasks, it is intuitive
that developers would need to understand the rationale of
code changes for them, e.g., in code review, or when reading
documentation. Others are initially surprising (e.g., when
installing or discovering tools) but become less surprising
after hearing our participants’ examples (column 4 in Table
2). For example, when a tool is poorly documented, some of
our practitioners resort to understanding its code changes to
understand its behavior.

Our main takeaway from these observations is that when
the rationale of code changes is well documented, it could
help software developers in many different situations. The
help could even be in less intuitive situations, such as when
they need to understand the rationale of code changes in
other codebases that they do not own (e.g., to understand
the behavior of external tools). Good documentation of
the rationale of code changes should consider the fact that
developers seeking it may be involved in a wide diversity of
tasks, which could cause them to search for it in different
places and search for different dimensions of it under dif-
ferent contexts. Furthermore, it would also be beneficial if
the documentation of the rationale of code changes can be
understood even by people outside the development team of
the software project (24% of responses mentioned seeking
the rationale of code changes outside their project).

We hope that this new understanding of how many
tasks can benefit from a well-documented rationale of code
changes encourages developers to document it well, and
doing so appropriately for a wide diversity of tasks (i.e.,
in adequate locations, and with adequate levels of detail
suitable for many contexts).

We also learned from the tasks and subtasks that our
participants reported but were not originally included in
the codebook: post-mortem analysis of bugs, and software
deployment. We believe that these tasks were not originally
observed by Begel and Simon because they are intuitively
performed less regularly, and are therefore harder to observe.
However, our participants reported these tasks in their ex-
periences of needing to understand the rationale of code

changes: they needed it to understand why an old bug was
introduced in the first place (to avoid similar ones in the
future), and they needed it to have a stronger understanding
of the new changes that they were deploying. We learn
from these observations that the rationale of code changes
is needed for both frequent and infrequent tasks.

Similarly, our participants did not mention some devel-
oper tasks from the codebook. Some of them were tasks
that do not necessarily involve code changes: tools (finding),
specifications (reading), and communication (finding peo-
ple). Others are tasks that are more focused on providing
information than requesting it: communication (persuasion,
meeting prep, interacting with managers, and teaching). The
remaining ones are tasks that we believe practitioners may
be more likely to think of them as part of a broader task
(and thus may not mention them specifically): programming
(commenting), project management (check in), communica-
tion (asking questions, email, and meetings). Overall, there
are more tasks and subtasks that require understanding the
rationale of code changes than those that may not.

Finally, we also measured the ratio of times that our
participants mentioned any task or subtask (Figure 3A). The
tasks that were most often reported by our participants were
programming (32% of mentions), followed by working on
bugs (22%), and communication (14%). Within them, the
most popular subtasks were debugging, code reading, code
review, learning, and documentation search.

Most often reported tasks teaches us that the most typ-
ical scenarios for practitioners needing to understand the
rationale of code changes are those that involve debugging
code or reading it to learn something about it, often during
code review, and by also searching for its documentation.
Therefore, developers documenting the rationale of code
commits to help other developers in the most typical sce-
narios should document the aspects of the code change that
could be informative for these tasks.

However, in addition to those scenarios, there is a long
tail of tasks that were much less often mentioned in our
practitioners’ scenarios, but still required understanding the
rationale of code commits. Therefore, developers aiming to
provide extensive documentation of the rationale of code
changes should document all the aspects of rationale that
could be relevant for all those tasks and subtasks.
5.2. RQ2: How often do developers seek the

rationale of code commits within their team’s
internal code vs. external code?

5.2.1. Research Method
We used the same method to answer RQ2 as we did for

RQ1 (see Section 5.1.1). We again analyzed our participants’
descriptions of their experiences investigating the rationale
of code commits, this time looking for whether they were
investigating internal or external code. As with RQ1, the first
and second authors of the paper first performed open coding
individually and resolved disagreements afterward in a joint
focused-coding session.

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

11
Tell me about one time in which you investigated a code commit
to understand its rationale. Why did you need to �nd the rationale
for that speci�c code commit? What was the rationale for that

speci�c code commit?

(A) Targeted code change per task

(B) Targeted code change
Figure 3: Tasks for which rationale for code commits is needed

5.2.2. Results
We display in Figure 3B the breakdown of how often

our participants reported investigating internal code vs. ex-
ternal code. Internal code refers to code changes owned by
our participants or developers in the development team for
which our participants are contributors to the team’s project.

External code refers to code changes owned by developers
from external projects’ teams to our participants. As we did
for RQ1, when it was unclear which source code was being
investigated, we coded the answer as “unspecified”.

Our participants mostly investigated the rationale of
internal code changes (53%), but they also investigated it
for external code changes (24%). The external code could
be code changes to open-source libraries or external projects
in the same organization related to the participant’s current
project. An example of external code changes, as one of our
participants mentioned, is “I was trying to look at forks of
that repository and how other people solved those issues.” In
most cases, our participants were investigating code changes
that were written by other members of their team— internal
code (team code) (41%); However, in other situations, the
investigated code change was written by the same person
investigating it — internal code (own code) (12%). Some of
our participants had forgotten the rationale of their own code
changes after some time had passed. One participant said,
“It was just a decision made by the person who wrote that
who also happened to be me.” We also connected our par-
ticipants’ targeted code change to the software development
task they mentioned performing when seeking the rationale.
We report targeted code change per task in Figure 3A.

In Figure 3A, we observe three types of tasks. The
first type includes tasks for which our participants reported
needing to understand only the rationale of internal code.
Examples of these are: code review and debugging. This
observation supports an intuitive guess that this type of tasks
would only need rationale of code commits in internal code,
since they often only involve internal code.

Other types of tasks are those for which our participants
reported needing to understand only the rationale of external
code. Examples of these are several tasks under the tools and
the documentation categories. We were less surprised that
our participants would need to understand the rationale of
code changes to external code when the developers investi-
gate tools since tools can often be developed externally. One
participant was reading the changelog of a tool he/she was
using.

“ ...one of the software that I work with is called
MXNet. It is a machine learning, deep learning li-
brary, and I saw in the changelog for MXNet that
they added support for one of the libraries it depends
on, open CV, which is a computer vision library. It
changed how they loaded JPEG and they included
support in MXNet ... In the MXNet changelog, they
made reference to the commit in open CV where
this occurred. So I looked at that commit and in the
detailed commit message... ”

We were more surprised that they also needed to understand
the rationale of code changes to external code when writing
documentation. However, our participants often were cre-
ating internal documentation about external code to better
keep track of the external code’s behavior. For example, one
of the participants was trying to write a tutorial for his team
about a specific tool, and so he had to discover the tool

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

12

in various ways, which led to multiple questions about the
rationale of code changes to the tool.

Finally, for other tasks, our participants mentioned the
need to understand the rationale of both internal and external
code changes. Examples of these tasks are learning and code
writing. It is more intuitive to understand why learning could
require understanding the rationale of external code changes
—to learn from external projects. However, we learned that
our participants also often have that need when writing code.
For example, when they are trying to port or incorporate
external code into their internal project. One participant
mentioned:

“ I worked on a derivative of the bitcoin codebase
for two years (named LBRYcrd). There were many
occasions where I had to trace the history of some
line of suspicious code. Often I would find bugs in
the LBRY-specific portion, but rarely in bitcoin... Just
recently, as I was working on the Golang version
of that, I had to understand where the UPnP code
portion came from to see if the author had created a
newer version (that might have fixed some bugs I was
seeing with it). ”
These observations may explain why other studies ob-

served that finding the rationale of code changes was some-
times easy, sometimes hard [18, 79]. It would be harder
to find when the developer is seeking rationale for exter-
nal code changes, since they would have access to fewer
documentation resources for external code changes than for
internal code changes. The fact that our participants need
rationale of external code could explain the challenge of
finding rationale and its consistent occurrence as informa-
tion need in information needs’ studies like [18, 79].

More generally, our participants needed to understand
the rationale of external code changes most of our studied
development tasks (all but “specification design” in Table
2). This observation motivates the creation of external-
facing tools and practices to improve the documentation and
explanation of the rationale of code changes, not only to
internal stakeholders but also to external ones. We discuss
ideas for how to achieve this in Section 8.4.

6. Theme 2: Components of Rationale
6.1. RQ3: Which components do software

developers decompose the rationale of code
commits into?

6.1.1. Research Method
Data: The data for this research question is a large set of

rationale for code commits components. We proposed nine
components based on the literature references to rationale. In
addition, our participants proposed 18 different components
of rationale for code commits.

Analysis method: Our goal is to create a mental model
and derive a taxonomy of the components. Therefore, we
used card sorting [75] to discover the components of ratio-
nale for code commits. Card sorting is a widely used inex-
pensive method with three phases: preparation (participants

selection and cards creation), execution (cards sorting into
meaningful groups), and analysis (hierarchies formation).
For the card sorting preparation phase, we prepared the
cards of all the components from the preliminary model
and the participants proposed final model. Then, for the
execution phase, we (the first and last authors) performed
individual open card sorting. We individually sorted the
cards without using predefined groups. During the individ-
ual sorting, we aggregated those cards that described similar
components. For example, we aggregated into “Side Ef-
fects”: the preliminary component “Costs”, and the “Merge
Conflict/Success”, “Limitation”, and “Impact” components
that were mentioned by different participants. After that,
both authors collaboratively consolidated the two sets of
individually-aggregated components, comparing them and
deciding on disagreements. Then, we characterized each
of the resulting aggregated components with a name, a
question, and an example answer to the question based on
a hypothetical commit. Finally, we categorized the resulting
components into themes for the analysis phase.

Analysis evaluation: Our discovered model of rationale
for code commits (Table 3) is of 15 different components.
The fact that many participants added and some removed
components suggest that our participants were not strongly
biased towards simply agreeing with the preliminary model
(Table 1). Also, although we interviewed 20 software devel-
opers, we reached saturation in the 15th interview.
6.1.2. Results

We display in Table 3 the model of rationale of code
commits that we discovered. It represents the union of all
the models that our participants reported. As we discussed
in Section 4.1, we obtained this model aggregating all the
components that were mentioned by at least one participant
in their final interview model of rationale of code commits.
Each participant built their final model by adding and remov-
ing components to the preliminary model, while also con-
sidering their own rationale decomposition. Altogether, our
participants reported 27 components of the rationale of code
commits, adding 18 components to the nine components in
the preliminary model. Since many of those components re-
ported very similar concepts, we aggregated them using card
sorting to obtain the final model that we show in Table 3.
This resulting model of rationale of code commits includes
15 components into which developers decompose it. We
categorized the resulting components into four themes.

Our goal with this rationale model was to gather an
extensive set of specific components of the rationale of
code commits, which developers may be looking for when
they need it. For that reason, when a participant removed a
component from the preliminary model, we still kept it in
our resulting final model (in Table 3). Besides, only a few
participants removed components.

When participants decided to remove components from
the preliminary model, they mentioned two main reasons:
overlap with other components, and the component being
out of scope. In terms of overlap among components, one

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

13

Table 3

Resulting model of the rationale of code commits

Theme Component Component Expressed as Question Example Answer

C
h
a
n
g
e

O
b
je
ct
iv
e

∗Goal What did the developer want to
achieve?

The code is this way because the developer wants to modify the usage
of try/catch blocks to account for unexpected Exceptions.

∗Need Why did the developer need to
achieve that?

The code is this way because the developer needs to improve Exception
handling by June 1st as per the new company demand to eliminate
exceptions before release.

∗Bene�ts What is the bene�t of what the
developer wants to achieve?

The code is this way because handling exceptions that were not
considered before will bene�t in increasing the system's quality.

C
h
a
n
g
e
D
es
ig
n

(p
re
-i
m
p
le
m
en
ta
ti
o
n

a
ss
es
sm

en
t)

Constraints What were the constraints limit-
ing the developer implementation
choice?

The code is this way because the developer choices are limited by the
team development guidelines that prohibit hard-coded Sring use.

Alternatives What other alternatives did the
developer have?

The code is this way because the alternative bucket sort implementa-

tion option is not feasible since the maximum value is unknown.

∗Selected Al-
ternative

Why did the developer make those
speci�c changes and not others?

The code is this way because heap sort has the advantage of being
space e�cient and has a predictable speed. Other sorting algorithms
options are not as e�cient and predictable.

Dependency What other changes does this
change depend on?

The code is this way because it depends on the API response format,
which needs to be updated to provide JSON format.

C
h
a
n
g
e
E
xe
cu
ti
o
n

Committer Who changed the code? The code is this way because it was introduced by Developer X, who
was our short-term consultant hired to improve the security of our
software system.

Time Why were the changes made at that
time?

The code is this way because it was introduced four months ago to
meet 3.0 release cycle.

∗Location What artifacts were changed? The code is this way because, in our MVC architecture, the model,
view, and controller are updated together when introducing a new
data �eld.

∗Modi�cations What speci�c changes were per-
formed in the artifacts?

The code is this way because the developer altered the user interfaces'
look and feel, including color and layout.

Explanation
of
Modi�cations

What are the details of the imple-
mentation?

The code is this way because look and feel are altered by :

1- Changing all interfaces colors to match color palettes provided by
web accessibility guidelines.

2- Changing all interfaces layouts to be responsive to screen size.

C
h
a
n
g
e
E
va
lu
a
ti
o
n

(p
o
st
-i
m
p
le
m
en
ta
ti
o
n

a
ss
es
sm

en
t)

∗Validation How did those speci�c changes
achieve the goal?

The code is this way because the goal is to account for an edge case,
which newly added test cases show the edge cases examples and verify
code success in handling the edge case.

Maturity
Stage

How mature is this code? The code is this way because it is an experimental hack created to
explore ways to �x a persistent bug.

∗Side E�ects What are the side e�ects of the
change?

The code is this way because of side e�ect mitigations; Temporary
control statements are added to avoid integration test failure until the
API is updated.

∗ Components that were included in the preliminary model of rationale of code commits. We extended the preliminary component Costs to
Side E�ects to include other side e�ects mentioned by participants e.g., Impact.

participant thought that goal and need can be the same most
of the time and preferred to merge them, deleting the goal
component. Another thought that need is included in benefits
and cost, deleting the need component. Another participant
deleted benefits because it is included in goal. Another one
considered location as part of modification.

We believe it is possible that different components’
answers can be the same in some cases. For a single code
commit, components of the same theme (see Table 3) may
have very similar answers to their expressive question. How-
ever, they will be different in many other cases, making it
worthwhile to separate those components. We illustrate the
differences between components in Table 3 by including the
components expressed as questions and different example
answers for different ones.

Other participants removed components that they con-
sidered out of scope of rationale. From our 20 interview par-
ticipants: two participants removed modifications because
they considered it too low-level; three participants removed
location because it would not tell why the changes were
made; three participants removed alternatives, e.g., “alter-
natives is not something that you actually implement!”; and
one participant deleted validation, saying that “validation
answers why the code is correct, not the rationale”. Despite
these disagreements, the majority of our interview partici-
pants (18, 17, 17, and 19, respectively) considered that these
components do belong in the rationale of code commits.

Furthermore, our participants generally provided posi-
tive comments about the preliminary model — describing
it as e.g., “a good model,” “detailed,” “thorough,” “com-
prehensive,” “holistic,” or “exhaustive.” They thought

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

14

that the model “formally define[s] rationale” and that “the
components seem to be related to each other, but classified
differently to each other.” One participant said that the model
is a

“logical framework for thinking through rationale
because [it is] a sort of wide-open concept. It is a
little bit hard to know how to think about [rationale].
[The model] makes sense as a directed way to under-
stand a specific commit or a series of commits. Why
they are the way they are.”
Many participants added components to the preliminary

model. As we mentioned earlier, we used card sorting to ag-
gregate them to the preliminary model and with each other.
The 18 components proposed by participants were: tech-
nical requirement, timeliness, documentation, guidelines,
non-feasible alternative, opinion selected alternative, con-
straints, dependency, committer, time/date, explanation of
modifications, result, environment, scope for future develop-
ment, quality, merge conflict/success, limitation, and impact.
For each added component, we also asked participants to de-
scribe them with a name, expressive question, and example
answer to the question.

The fact that many participants added and some removed
components suggest that our participants were not strongly
biased towards simply agreeing with the preliminary model.
More importantly, it also suggests that different developers
seek different components at different times. Our study
throws light into this phenomenon. Thus, we posit that
the rationale of code commits would be much easier to
comprehend, search for, and document when expressed as
its components– not necessarily all of them at all times, but
the ones relevant to each situation.

7. Theme 3: Experience with Rationale
7.1. RQ4: What is the experience of developers

needing, finding, and recording the rationale
of code commits?

7.1.1. Research Method
The data for this research question is quantitative. We

asked both the interview and survey participants the likert-
scale-style question shown in Figure 4. To analyse the par-
ticipants experiences’ responses, we compare and report the
responses’ statistics.
7.1.2. Results

Figure 4 shows the interview/survey questions which we
asked about the developers’ needing, finding, and recording
experiences along with the distribution of the participants’
responses for each question.

Need: The participants of our study reported needing
to seek rationale with diverse frequencies (see Figure 4A-
i): multiple times per day (27%), multiple times per week
(29%), multiple times per month (27%), multiple times per
year (13%), and a few times per year (2%). Overall, the
majority (56%) of our study participants need rationale
relatively frequently: multiple times per week or more often.

The inconsistency of the need for rationale for code commits
is because of the diversity of the software developers’ roles
and their work activities. One participant said

“I do a lot more than just software engineering on a
yearly basis. And so there are periods of time when I
am doing primarily software engineering, and there
are large periods of my work time that I am not.”
When asked about how important it is to understand the

rationale of code commits, 86% of our participants reported
needing the rationale of code commits (see Figure 4A-ii),
from which: 7% cannot complete their work without under-
standing it, 30% struggle to complete their work without it,
and 46% can complete their work without it but still need
it. The remaining 17% do not need the rationale of code
commits, but 15% of the 17% report that it still helps them
complete their work. A very similar question was studied by
Tao et al. [79], whose participants “generally considered
knowing the rationale of a change as the top priority in
change-understanding tasks”. Our finding is aligned with
theirs since a majority of our participants reported needing
the rationale of code commits, which validates that we are
studying a similar population of developers.

Finding: Our participants’ responses in Figure 4B-i
indicate that the difficulty of finding the rationale of code
commits, in general, is not easy nor difficult. Software devel-
opers (on average) selected neutral difficulty of finding the
rationale of code commits. This finding also generally agrees
with Tao et al. ’s, since their participants reported that the
rationale of code commits was generally easy to find, but
sometimes hard, depending on “the availability and quality
of the change description” [79].

Regardless of how hard it is, we were also interested in
how often developers end up finding the rationale of code
commits altogether. For this aspect, our study participants
responses are positive (see Figure 4B-ii). Most software
developers find the rationale of code commits often or almost
always. Only a few participants (11%) rarely or almost never
find the rationale of code commits.

In addition to studying whether software developers find
the rationale of code commits, we also studied how much
time they spend searching for it. Figure 4B-iii and 4B-
iv shows the times that our participants reported spending
when searching for rationale. In the usual cases, slightly
more than half of our participants (55%) spend less than
10 minutes. However, in the hard cases of searching for
rationale, only slightly less than half of our participants
(46%) spend more than 30 minutes searching for the ra-
tionale of code commits. One participant said about the
time they spend searching for rationale in the hard cases
that it “depends how responsive the other person is.” A
considerable amount of time, 68% of the participants spend
more than 20 minutes, is spent by software developers when
it is hard to search for the rationale of code commits. When
considering the relatively high frequency with which devel-
opers search for rationale of code commits, it can be a rather
time-consuming task.

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

15
(A) Experience of developers needing rationale

During your software engineering activities, which frequency best
re�ects how often you sought rationale?

(A-i) Rationale frequency of need

How important is understanding the rationale of code commits for
the completion of your work?

(A-ii) Rationale importance

(B) Experience of developers finding rationale
How di�cult is it to �nd rationale?

(B-i) Difficulty of finding

How often do you usually �nd rationale?

(B-ii) Frequency of finding

How much time do you usually spend when searching for the
rationale of code commits?

(B-iii) Usual search time

In the cases where it is hard to �nd the rationale of code commits,
how much time do you usually spend when searching for the

rationale of code commits?

(B-iv) Hard cases search time
(C) Experience of developers recording rationale

During your software engineering activities, how often do you record rationale?

Figure 4: Experience of developers with the rationale for code commits

Recording: Regarding the frequency of recording ratio-
nale in general, Figure 4C shows our participants’ responses.
Our participants reported high involvement in recording the
rationale for their code changes.

The majority of them (71%) reported recording the ratio-
nale of code commits often (31%) or almost always (40%).
These ratios are very similar to the frequencies with which
they report needing it and finding it. However, there may be
multiple explanations for why these two ratios are similar.
It could be that the teams to which our participants belong
are generally diligent about documenting the rationale for
their code changes, and that is why they report finding it at
similar frequencies when they need it. However, there could
be more nuance to this observation: our participants may
sometimes find the rationale that was documented, and other
times find it after asking their colleagues (because it was not
documented). Also, the found rationale by our participants is
a reflection of the documentation habits of their teammates
than theirs. Our observation motivates further study of the

extent to which the specific rationale that developers doc-
ument is what ends up helping their teammates later find
it (e.g., with observational studies or mining of software
repositories). We take one further step in understanding the
similarity between the frequency of recording and finding
the rationale of code changes in more depth in RQ7 (see
Section 7.4), in which we observed that such similarity is
generally preserved for individual components of it.
7.2. RQ5: What is the experience of developers

needing, finding, and recording the individual
components of the rationale of code commits?

7.2.1. Research Method
Just like RQ4, the data for this research question is

quantitative. We asked likert-scale-style question shown in
Figure 5. To analyze the participants experiences’ responses,
we compare and report the responses’ statistics. For the
individual rationale components, the answers include only
the interview participants that included them in their final

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

16
(A) Experience of developers needing individual components of rationale

During your software engineering activities, which frequency best
re�ects how often you sought [Component]?

(A-i) Frequency of need

How important is �nding each component (for understanding the
rationale of code commits)?

(A-ii) Components importance
(B) Experience of developers finding individual components of rationale

For the components of rationale of code commits that you seek,
how often do you usually �nd [Component]?

(B-i) Rationale components frequency of finding

For the components of rationale of code commits that you seek,
how di�cult is it to �nd [Component]?

(B-ii) Rationale components difficulty of finding
Figure 5: Experience of developers with individual components of the rationale

model. Whenever we aggregated components through card-
sorting, we also aggregated the responses about the experi-
ence. The reported experiences with rationale components
combine the aggregated interview and survey responses.

In addition to the responses’ statistics, we wanted to
cluster components with similar experiences. Clustering the
components made it simpler for us to compare the ex-
periences. We used Scott-Knott [28] clustering algorithm
to group the components which have similar software de-
velopers’ experiences. Scott-Knott is a hierarchical clus-
tering algorithm that serves in the Analysis of Variance

(ANOVA) contexts. For the individual experiences (need,
finding, and recording), the algorithm compares the means
of all component’s responses. This comparison results in
a non-overlapping grouping of rationale components. We
present the algorithm outputted groups by the red border-
lines in Figure 5.
7.2.2. Results

We wanted to expand our knowledge about software
developers’ experiences with rationale components and how
it differs from their general experiences with rationale.

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

17

(C) Experience of developers recording individual components of rationale
During your software engineering activities,
how often do you record [Component]?

Figure 5: Experience of developers with individual components of the rationale (cont.)

We plot the distribution of answers to our questions
about individual components of the rationale for code com-
mits in Figures 5A–5C. We cluster components into similar
groups according to the mean value of their responses using
the Scott-Knott [28] algorithm. We sort the components in
our figures by the mean value of their responses, and we
use red horizontal lines to separate clusters. As a reference
point, we also include in each figure the responses that our
participants gave for rationale in general.

Need: Figure 5A-i shows the distribution of responses
for how frequently developers need each component of
the rationale of code commits. Overall, the frequency with
which developers need different components of the rationale
of code commits is highly similar for all components and
rationale itself in general. In this case, the Scott-Knott
algorithm returns only two very-similar clusters. While some
of the most often needed components (like modifications,
location or committer) are normally automatically recorded
by revision control systems, many other components are
similarly often needed and are not recorded automatically
(like need or dependency, or constraints). These results show
that practitioners would benefit from regularly recording
these frequently-needed components.

Figure 5A-ii shows the relative importance of each com-
ponent to understand the rationale of code commits reported
by developers. These results show that most developers
mentioned that most components are important enough to
understand the rationale of code commits better if they knew
that component. We also observe that developers wanting to
document the most important component of rationale should
focus on documenting the goal of their changes, since the
other most-important components (modifications, location)
are already recorded by revision control.

Finding: Figure 5B shows the relative frequency and
difficulty of finding reported by developers for each compo-
nent. Unsurprisingly, the most frequently found components

(and also the easiest to find) are those automatically tracked
by revision control (committer, modifications, and location),
followed by goal and time. However, the frequency (and
easiness) of finding drops quickly for all other components,
bringing our attention to a clear problem in finding the
remaining components. These results highlight the need
to improve documentation for the other components since
they are hard to find. This clear divide could also explain
why developers talking about rationale (in general) say that
sometimes it is much harder to find rationale than other times
[79] and it takes longer (Figure 4B-iv).

Recording: Figure 5C shows the relative frequency
with which developers reported to record components of
the rationale of code commits. Again unsurprisingly, the
most frequently recorded components are those recorded
automatically by revision control, but again the frequency of
recording drops dramatically for the remaining components
(which probably explains why they are hard to find). These
results show that, even if developers claim to frequently
record rationale in general, there are many components that
they are not recording frequently (even if they are relatively
often needed).
7.3. RQ6: What makes software developers give

up their search for rationale of code commits?
7.3.1. Research Method

We asked our (20) interview and (26) survey participants
an open question about when they give up their search
for rationale of code changes. We analyzed their responses
qualitatively, using open coding to extract the factors that our
participants reported. All the authors of the paper were in-
volved in the coding. We reached saturation in our observed
tasks in response 20 of 46.

Data: For this research question, we asked our partici-
pants an open question: “When do you give up the search for
rationale of code changes?”. We asked this question during

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

18

Table 4

Factors leading software developers to give up the search for rationale of code changes

Factor Category Give Up Factor Give Up Factor Description

Project-centric
Factors

Codebase state The codebase state includes (1) the repository state (e.g., the number of commits in a pull
requests under review) and (2) the code aspects (e.g., the code is/is not running, the code has
design/readability issues, the code is reviewed).

Documentation The documentation factor includes (1) artifacts documentation (e.g., Javadocs, inline comments) and
(2) development process documentation (e.g., commit messages, log messages).

Human-centric
Factors

E�ort
management

E�ort management involves the developers' assessment of their work activities in terms of the required
(1) e�ort and (2) time. This assessment is typically followed by a decision to possibly give more
priorities to some of these activities, discard or replace some others.

Developer knowl-
edge

Developer knowledge involves the developer possessing/awareness of (1) background knowledge to
comprehend the code change under inspection (e.g., programming language, mathematics, technical
knowledge) or (2) project knowledge (e.g., project design aspects, implementation aspects, and testing
aspects).

Interpersonal
(Emotions)

Interpersonal factor involves human sentiment or attitude in the situation (e.g., frustration, confusion,
fear of obtrusion to the code review).

Team-centric
Factors

Impact on produc-
tivity

Impact on productivity includes the developers' awareness of the impact of their actions on the project
progress (e.g., work progress stalls).

Personnel Personnel includes aspects related to the development team personnel (e.g., developer is not around,
project manager changed).

Time
management

Time management includes the team time-related aspects (e.g., time crisis (deadline), team time-
frame for the project).

our interviews and survey. We used a survey in addition to
the interviews to reach saturation in our observations — an
initial analysis of the interview responses showed that we
were still making new observations in the last responses.

Analysis method: We analyzed our participants’ answers
using open coding [53] (also used in grounded theory [1]).
We decided to apply open coding for this research question
(as opposed to closed coding, as in RQ1) because it was
not clear that any pre-existing list of “reasons to give up
tasks” would fit this context well. We decided that it would
be more appropriate to have our codebook emerge from
our participants’ responses in this case. We labeled each
participant’s answer with one or multiple codes that best
described the reported factor(s).

First, the first two authors of the paper individually coded
the interview responses. Then, they had a discussion to
merge their codebooks and reach a common understand-
ing of the scope of each code. During this meeting, they
also categorized the resulting codes under three broader
themes: project-centric, human-centric, and team-centric
factors. Then, they individually reviewed and updated the la-
bels of each participant’s response, according to the merged
codebook. After this step, the two authors reached an agree-
ment ratio of about 85%. Then, they held a joint focused-
coding session where they resolved all disagreements.

This first effort did not allow us to reach saturation — the
last response mentioned a new factor that was not previously
observed. Thus, we decided to obtain more responses to
the same question, running an additional survey that we
described in Section 4.3.

The first two authors of the paper individually coded
the survey responses, using the codebook obtained from
their analysis of the interview responses. They allowed the
addition of new codes to the codebook if new factors were
observed. The two authors coded about 46% of the survey
responses similarly. Then, they held a joint focused-coding

session to compare their coding and resolved all disagree-
ments. After coding all the survey responses, no new codes
were added to the codebook.

Analysis evaluation: After coding all the interview and
survey responses, we reached saturation in our observed
give-up factors —we observed no new factors after the 20th
response out of 46 (the last interview response).
7.3.2. Results

We present the results of this research question in Table 4
and Figure 6. Table 4 shows the factors that our participants
reported for giving up the search for the rationale of code
changes. It also contains a description of each factor. Fig-
ure 6 shows the ratio of how many times our participants
reported each factor. Our eight observed factors were men-
tioned 69 times by our 46 participants since some of them
(16) mentioned multiple factors.

Figure 6 shows our three observed categories of factors
being reported relatively similar rates: the most often re-
ported factors were project-centric factors (39%), followed
by human-centric (30%) and team-centric (19%) factors. The
remaining 12% of responses form the unspecified category:
these either did not provide a valid specific answer to the
question (6%) or reported never giving up the search (6%).
Next, we describe each category in more detail.
Unspecified factors: An example of an invalid response
stated why it is important to understand rationale without
mentioning giving up or giving up actions. Examples of
participants reporting not giving up either stated it explicitly
or reported giving up only temporarily. Sometimes, giving
up temporarily meant switching to another task, leaving the
rationale-demanding task for a later time:

“ Essentially, if I cannot talk to the person who
committed it, I will usually just postpone until they
are back online. ”

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

19
�When do you give up the search for rationale of code changes?�

Figure 6: Give up factor

Other times, our participants paused to rest and returned
to the task later with a fresh mind or after acquiring more
background knowledge.

“I usually do not give up. I mean, I just go run or
sleep, and then I try again the next day. With a clear
mind, or something like that.”
“Well, sometimes, if I want to do something and
implement something math-intense, perhaps I will go
first and revise my math knowledge behind this. ”

Project-centric factors: Our participants most reported
give up factor is codebase state (20%). When the code base
state is problematic (e.g., “commit is quite large”, “changes
are too much to be able to track them”, “variables are not
properly named”), our participants may give up their search
for rationale of code changes. This observation shows that
past efforts to aid in the comprehension of source code,
e.g., efforts to untangle large code changes [36, 37, 22],
have additional benefits. Any effort that helps improve the
comprehension of source code would also help developers
not give up their search for the rationale of changes to that
code.

Our participants also reported giving up due to poor/lack
of documentation (19%). Lack of good documentation here
refers to both the source code documentation, e.g., JavaDocs,
and the documentation of the development process, e.g.,
commit messages.

Poor documentation in source code is a well-known
problem [2], and we found that it affects the search for
rationale too. One participant mentioned:

“In well-documented code it is very rare that doing
this is necessary.”
Our participants also highlighted the importance of doc-

umenting the change itself and not only the code.
“ Committing with a summary might not be enough
sometimes. It is better to add a broader description
to give a more detailed idea about the changes. ”

In general, our participants communicated giving up the
search for rationale of code commits when the “commit lacks
description”, “old documentation is not found on GitHub”.
They also give up when the commit message “is vague”, “not
illustrative enough”, or “not descriptive enough to help me
understand what is going on”.

Even when best practices are specified to document code
well, they can be followed inconsistently or the granularity
of the documentation can be too coarse.

“ I wish the commit messages were more granular so
that they exist on each file level instead of the whole
commit event. ”
The automatic generation of commit messages has been

proposed in multiple research efforts [41, 42]. Our observed
responses call for attention from the researchers working
in the commit message auto-generation area. Our observed
responses call for designing techniques that generate more
granular commit messages, potentially documenting some
of the rationale components presented in RQ3.
Human-centric factors: These factors refer to the internal
state of the developer, more specifically to the developers
sense of effort (17%), knowledge (9%), and interpersonal
emotions (4%).

Some of our participants evaluated the effort required to
find the rationale of code commits. We believe that effort
management is an intuitive give-up factor since developers
can spend long hours or even days attempting to find the
rationale of code changes. Developers often have several
tasks to do, and they want to move on. They can get frustrated
if they spend long time and effort being blocked by a single
task. Our participants commented on the time sent search for
rationale of code changes:

“If it takes half an hour, it is not worth spending
more time [on the search]. Then, I will ask others and
interrupt their work”
“I would say at the hour mark, because at that point
I would be like, “I just need to do something, and I
will make a best-case judgment call.””
“If it is taking me more than 30 minutes [to find the
rationale of a code commit], I will start trying and get
in touch with the person who wrote the code, at which
point it becomes an asynchronous process. So I am no
longer sitting there trying to figure out the rationale;
I will email/message the person, then I move on with
whatever I was doing.”
Other participants mentioned lack of knowledge as a

reason to give up searching for rationale. Their responses
referred to knowledge to background and skills, or knowl-
edge about the project. Examples of the first case are when a
developer is not fluent in a particular programming language
or not familiar with the underlying mathematical founda-
tions of the code. Examples of the second case are when
a developer is responsible for certain project areas (e.g.,
back/front-end) and lacks knowledge of other project areas.
As a result, we see the existence of this factor as a normal

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

20

part of software development. Educating developers could
mitigate this factor, but in many cases, it is not an afford-
able option in terms of cost and developer time. In other
words, this specific give-up factor might be one of the main
prompts for documenting the code change rationale since it
is inevitable on many occasions. Furthermore, this factor,
perhaps, encourages documenting rationale in a way that
other developers can understand regardless of their detailed
knowledge of the project.

Finally, other participants expressed that interpersonal
(emotions) play a role in giving up their search for rationale
of code changes. One participant answered:

“ No specific time cut-off, I would say. I would say it
is more. . . how frustrated I am ”

Other emotions that we observed were confusion, fear of ob-
trusiveness, and anger. Software developers’ sentiments and
emotions are important aspects that could impact their work
[31, 58, 32]. Our findings suggest that negative emotions like
frustration impact the software developers while searching
for rationale of code commits. Therefore, we encourage
future studies of the relationship between sentiments and
rationale. We also encourage future studies of how to mit-
igate the impact of these sentiments while still satisfying
developer information needs.
Team-centric factors: Our participants expressed that changes
in the project personnel (12%) introduce obstacles to com-
munication and could prevent them from finding the change
owners’ rationale. One participant described a give-up situ-
ation caused by personnel that left as

“[The change] was a decision made by [the previous
project manager] that is not even here anymore. We
do not really understand the reason, but we make a
new decision from this point forward.”

Personnel changes are common in software development
teams. In such situations, we think that standard documen-
tation guidelines could make the search of rationale for code
changes easier. One participant described his/her company
guidelines:

“At my company, typically we link each commit,
branch, and PR to a ticket number, which should
include details and discussion about the change and
why it is being made.”
Our participants also give up their search for rationale of

code changes to accommodate project-related time manage-
ment. For example, in a rush to fix a bug before approaching
a software release, one participant said that he/she came up
with some rationale for a buggy code change to provide a
temporary fix of the bug. One participant answered:

“When I have to, it could be when I am not getting
other things done because I am searching for this ra-
tionale. Working intimately with another partner, our
progress was halted until I completed or gave up. In
other contexts that I have somewhat been associated
with a large team, I do not need to understand it as
long as other people on the team do.”

Composite factors: Sixteen participants (34%) mentioned
more than one give-up factors. Twelve of them mentioned
two factors in conjunction. For example:

“I will look at the commit (code and description) as
well as the pull request, including the commit and the
ticket relating to that pull request. If the implementer
can still be contacted, I will do so. If none of this leads
to any results, I will usually give up. ”

The remaining 4 participants mentioned two or more factors
in disjunction. For example:

“ Usually, there are certain scenarios where I give
up finding rationale, if I cannot run the code, or if it
is a language that I cannot understand, programming
language. Or the code base is too big. ”
When participants report factors in conjunction, they

show that many factors need to co-exist for them to give up.
Most of the time, they mention the lack of documentation
in addition to another factor. The second factor is sometimes
the codebase state (3 times), showing that the commit is large
or complicated, making the search for rationale a tedious
process. Some other times, the second factor besides the
absence of documentation is the absence of the author (3
times), which deprives the developer seeking the rationale
from, possibly, the two most helpful information sources.

When our participants report factors in disjunction, they
show multiple individual reasons why they may give up
(one of them is enough). For example, they may give up to
save effort (effort management factor) given the large size
of the commit (Codebase state), or because they were not
sure they had the required project knowledge to understand
the code change (Developer knowledge) given the poor code
readability state (Codebase state).

Another case that we found interesting is when the
participants use a combination of factors mixing negative
and positive instances of them (3 times). For example, a
participant’s decision to give up seeking rationale was based
on a close project deadline, but the decision was eased by
the fact that the code was running correctly, in which case
seeking rationale was not a pressing need.

“ ...Then, the main concern was to finish the project
before the deadline. Sometimes in such a situation,
if the codes work, then I did not try to check the
rationale. ”
We believe that the search time required to find the

rationale of code commits is likely connected with the dif-
ficulty of finding it (Section 7.1.2), i.e., the rationale for
code commits may be easy to find when it is available
and well documented. When the components sought by the
developer are documented where the developer is expecting,
the rationale for code commit could be easy and fast to find.

The problems revealed by the team and project factors
are: the reliance on the availability of the change owner,
the trade-off between searching for rationale and productiv-
ity/time, and the quality of a project’s codebase and docu-
mentation. We discuss in Section 8.4 how future tools could
support developers in their search for the rationale of code
commits, informed by our observations.

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

21

7.4. RQ7: Would comparing the experience of
developers needing, finding, and recording the
individual components of the rationale of code
commits with each other reveal areas for
improvement?

7.4.1. Research Method
The data for this research question is the same as

RQ5. We performed a cross-experiences analysis to fur-
ther investigate the developers’ experiences with rationale
components’ need, finding, and recording. We paired every
two experiences (need-finding, need-recording, and finding-
recording) then used the median responses of each compo-
nent to discover needed areas of improvement.
7.4.2. Results

Figures 7A and 7B show that software developers are
most frequently finding and recording the most frequently
needed components of rationale. Most of the components are
in the middle frequency of need and finding. However, this
result reveals that many components are not too frequently
needed, but when they are needed, they are really hard to
find. Developers most struggled to find side effects, alterna-
tives, and constraints, even if they need to find them on aver-
age multiple times per month and per year. In these cases, the
difficulty of finding these components may overcome their
limited frequency of need. Thus, practitioners may want to
pay more attention to documenting these not-so-frequently-
needed components.

The difficulty of finding rationale depends on many fac-
tors, e.g., the complexity of code commits, the developers’
documentation of code changes, and the need for discovering
the rationale. One of the participants said about the giving
up of searching rationale

“I would completely give up if I could not find any
record in our system and the author was someone
who either is no longer at our company or is some-
body who just does not write code anymore. Yeah. I
give up when I have exhausted all the possibilities,
but if I really need to know, I would keep trying until
I figured it out.”

For the components of rationale that are not easy to find,
guidelines could be established, and tools could be devel-
oped to simplify finding these components. One participant
said about finding rationale:

“From my experience, the rationale, it is easier to
figure out once your team kind of has standards or
guidelines.”

The recording of rationale goes hand in hand with the finding
of rationale (see Figure 7C). Unsurprisingly, not recording
some components makes it hard to find them later. The rarely
recorded components were: side effects, alternatives, con-
straints, selected alternative, maturity stage, and benefits —
even when developers need to find them on average multiple
times per year (alternatives and constraints) and per month
(remaining ones). Identifying this group of rarely recorded
components should encourage researchers to develop tools

specifically focused on recording or answering them. For ex-
ample, a technique to evaluate the maturity stage of a commit
will aid developers in seeking this component without the
need for other developers to document it manually.

(A) Components need vs. finding

(B) Components need vs. recording

(C) Components finding vs. recording
Figure 7: Cross-dimensional analysis of developers experience
with the individual components of rationale of code commits

8. Discussion and Implications
This section discuss our findings and their implications.

8.1. Is the need for rationale of code commits
different than the need for rationale in other
contexts?

Some of the components of the rationale of code com-
mits that we discovered are also relevant for rationale in
software requirements, design, and architecture. These are:
constraints [34, 77, 30, 81, 33], alternatives [51, 56, 33, 34],
and validation [34, 30, 33]. However, we also discovered
components that are specific to the scope of code commits:
committer, time, location, and modifications. They generally

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

22

refer to performing the code change. Our participants indi-
cated that these components are more needed and important
than those that also show in rationale in other contexts
(see Figures 5A and 7A). Similarly, some components were
not mentioned in our study and were reported by previous
work as part of the design rationale. Examples are: design
assumptions [77, 30, 81] and weaknesses [77, 30].
8.2. Providing a better understanding of the need

for rationale of code commits
The observations in this study illustrate the importance

of supporting developers in documenting and finding the
rationale of code commits. Software developers regularly
need the rationale of code commits (RQ4, see Figure 4A-ii)
and spend a significant amount of time searching for it (see
RQ4, Figures 4B-iii and 4B-iv).

Our observations also allow us to speculate about the
root cause of this problem. We observed that most compo-
nents of the rationale of code commits are frequently not
recorded (RQ5, see Figure 5C and RQ7, see Figure 7B), not
found (RQ5, see Figures 5B-i and RQ7, see Figure 7A), or
difficult to find (RQ5, see Figure 5B-ii). This may be because
finding rationale for code commits could be very easy when
the rationale is well documented, or the change owner is
easily available to provide the rationale.

We also observed that finding the rationale of code
commits may cause productivity loss and sometimes without
gain. Furthermore, even after investing high effort searching
for it, a variety of factors may lead them to abandon the
search (RQ6, see Table 4), making their productivity loss
more serious, since they did not get any value from the
time spent. Furthermore, after giving up their search for
rationale, developers may resort to speculating their own
understanding, which may lead to introducing code errors.

“At one point, I gave up understanding why they did
what they did. I was confused as to why [input check
was done] redundantly and gave up trying to figure
out. I removed the [redundant check] later on as it
made more sense [to me].”

8.3. Our vision: how should practitioners
document the rationale of code commits?

We do not believe that developers should necessarily
document every component of rationale all of the time.
In fact, our participants mentioned concern about such an
approach.

“I know it might not be doable or possible because no
one will ever answer all these in a commit. However,
it is a good model.”

Instead, the goal of our model is to provide a superset of
the possible components that could answer a question about
the rationale of code changes. Developers would then choose
which components are relevant for which code change. We
believe that developers may seek different components of
rationale at different times, but not necessarily all of them
every time. In fact, we observed that they seek different
components with different frequencies (see Figure 5A-i).

We see our decomposition of the rationale of code com-
mits as an artifact to support developers in documenting it
(by reminding them of all the components they may want
to document), not as a template that they would always be
forced to fill completely. We believe that different compo-
nents will be relevant for different types of code changes, and
developers should judge which ones are worth documenting
on each occasion. However, having our model as a checklist
to review while documenting the rationale of code changes
can be very useful for developers to ensure that all the
relevant ones are documented. A similar approach was suc-
cessfully applied in the area of bug reports [21, 11], not only
to assist the documentation of various components but also
to measure their quality. Checklists are a known powerful
mechanism to ensure processes are performed correctly [24].

Another measure that would benefit developers is the
lazy documentation of the rationale of code changes — i.e.,
to document it opportunistically after they have needed it.
Our observations in RQ6 show that developers often give up
seeking the rationale of code changes due to not finding it in
the code or documentation. Other times, they do not find it
in code or documentation, but end up finding it in different
ways, e.g., asking a colleague:

“If I cannot figure out, I ask someone to help me out
to understand the code because I need to work.”

We believe that this signals an opportunity: if developers
document the rationale of code changes in a centralized
documentation (maybe in the code comments themselves)
after identifying it by other means, the next developer will
easily find it when searching. This incremental approach to
documenting may be preferred by many developers since the
workload may feel more manageable that way, e.g., as is the
case with other practices like incremental testing [47, 46].

Developer teams are diverse [29], and some developers
may want to improve the documentation of rationale of their
past code commits in a more exhaustive fashion, as opposed
to opportunistically. Some developers may also want to
improve the current documentation of rationale of their past
code commits, in a more exhaustive fashion —as opposed to
opportunistically. Our observations also provide feedback on
how to prioritize such efforts. A starting point for improving
the rationale documentation of existing commits would be
tackling the areas of improvement that we identified studying
RQ5 and RQ7. We observed which components of the
rationale of code commits are frequently not recorded (RQ5,
see Figure 5C and RQ7, see Figure 7B), not found (RQ5, see
Figures 5B-i and RQ7, see Figure 7A), or difficult to find
(RQ5, see Figure 5B-ii).
8.4. Our vision: how could tools support

developers in documenting the rationale of
code commits?

Our observations provide some advice on designing
future support for developers to find the rationale of code
commits. We observed that the need for the rationale of
code commits has a wide reach: it affects most software

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

23

development tasks and subtasks (RQ1, Figure 3A). There-
fore, any future support should be accessible and convenient,
independent of the developer’s task.

We also observed that the rationale of code changes is
needed for code changes in software projects both within
the developer’s company and external to it (RQ2, Figure 3).
This teaches us that the rationale of code changes should
be documented by also keeping in mind developers that do
not necessarily belong to the software development team.
Some examples of additional considerations that developers
could have to be inclusive of external developers in their
documentation efforts are: including clarifications about vo-
cabulary that is specific to the software project (or adding
links to a centralized legend); including assumptions that
may be clear to the development team, but not to outsiders
(e.g., assumptions about the pre-set configuration of the OS
or underlying libraries); documenting best practices that are
common within the development team, but that may not
be intuitive to outsiders (e.g., unconventional code writing
habits, such as special casing, indentation, exception han-
dling, logging, etc.).

Our observations of why developers give up their search
for rationale also inform how future techniques can be de-
signed. We observed that the major factors why developers
gave up were: (1) the poor state of the code and documenta-
tion, or (2) to avoid impacting the productivity of their team,
or (3) their own. Therefore, it would be beneficial if future
efforts to support the documentation of the rationale of code
commits address these issues.

In particular, we believe that future efforts should sup-
port (1) recording the rationale of code commits once it is
found. For example, allowing the edit of code commits (or
other artifacts where rationale could be recorded) after they
are created, so that if their rationale was missing, it could
be added after it is sought and identified. We also believe
that future efforts should support (2 & 3) asynchronous
communication mechanisms, so that the productivity of the
seeker and the people eventually providing the rationale can
be impacted as little as possible.

A future centralized tool that supports asynchronous
discussion of rationale for a code change (similar to the
asynchronous discussion provided by code review tools for
assessing code changes) would enable efficient communi-
cation among developers, while also helping rationale doc-
umentation. As code-review tools have shown, channeling
and centralizing common conversations about code changes
(in this case, it would be about rationale) can positively
impact developer teams. Our participants also echoed the
benefit of connecting software development artifacts that are
related, so that their later comprehension is made easier:

“At my company, typically we link each commit,
branch, and pull request (PR) to a ticket number,
which should include details and discussion about the
change and why it is being made.”

They also commented on the opposite: the difficulties they
face when these centralized connections break.

“What usually makes the search more difficult is
when code has been moved around, and the version
control system lost track of its origin.”
Such a centralized system to support discussions about

the rationale of code commits could provide additional ben-
efits. First, it could be useful for developers to signal and
keep track of code changes that need better documentation
— which could be better documented at any pace that
suits practitioners (supporting the lazy documentation that
we discussed in Section 8.3). This practice of signaling
improvement needed can be especially useful before some-
body leaves the company — they could be requested to
document all the code changes that they performed and need
better documentation. This could contribute to reducing the
problem of not being able to find rationale that can only be
provided by somebody who has already left the team (as we
observed in RQ6).

Having a tool to support conversations about the ratio-
nale of code commits would make it easier to document
rationale after the discussions have happened — because
the conversations themselves could help and simplify the
process of producing structured documentation (as in bug-
tracking systems). Such a system could also make it easier
to save the documentation in the right place, connected to
the code change discussed.

Finally, such a tool could also make it easier to find
the rationale of code changes that have already been doc-
umented. If we had a system that kept track of the conver-
sations about and documentation of the rationale of code
changes, it would be easy to offer that information in easy-
to-access ways in software development environments. The
retrieved rationale of code changes could also be represented
in different ways to fit the different tasks in which developers
need to find it (RQ1) — similar to how the Whyline system
provides already-available program-slicing information in a
much more user-friendly format [48]. Such varied repre-
sentations may also require varied analyses, e.g., rationale
finding triggered by a debugging task might require in-depth
navigation of the history of relevant code changes (e.g.,
[69, 70, 71, 72, 68]), whereas rationale finding triggered by
learning about an external tool might require a broad search
for similar codes across the external codebase. Finally, these
efforts should provide the right amount of information to
developers, since giving too many recommendations can
have hidden costs [44].

An example of such an enhancement of an IDE would
be to provide the rationale of code changes while the user is
actively debugging a feature. The IDE plugin could gather
rationale components from previous commits, where the
specific feature under debugging was changed. One of our
participants commented on the importance of understanding
the evolution of code (i.e., “why the code is this way?”) while
debugging:

“I believe that understanding the evolution of the
code is just as important as understanding the current
code. If you know where the code has been, you can
get a sense of where it needs to evolve for the next

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

24

release and to be able to avoid the pitfalls of past
bugs.”

8.5. Our vision: how could the documentation of
the rationale of code commits be automated?

The previous subsection describes how future software
tools could support developers in the process of document-
ing and finding the rationale of code commits. Next, we
discuss how some parts of that process could be more
strongly automated.

First, we see opportunities to automate the detection of
insufficiently documented rationale of code changes. This
could be either code changes completely lacking the docu-
mentation, or lacking relevant components. Automating this
problem would be akin to predicting which code changes
developers are likely to face the need to understand rationale
components that are not currently documented. Such a tool
could base its predictions on observing which characteristics
are common among the code changes for which certain
components are requested. We believe that this tool would
be really valuable for developers to prioritize their efforts of
documenting the rationale of code commits i.e., starting with
those for which their rationale is likely to be requested.

Next, we also see opportunities for automating the doc-
umentation of the rationale of code changes. Similarly, tech-
niques could be developed to capture the common char-
acteristics among the code changes with a specific answer
to a given component of the rationale of code changes. If
such common characteristics could be captured, future code
changes with similar characteristics could be automatically
labeled with the same answer to the rationale component.
Similar mechanisms have been successfully applied to sim-
ilar goals, e.g., applying machine learning to detect design
patterns [9]. Other approaches may also be promising, such
as applying techniques for summarizing and documenting
code changes like [19, 17], tools answering “what” and
“why” questions about code changes like [41, 42, 63, 48, 13],
and studies of impact and risk of changes like [82, 43, 65].

Any efforts to automate or support the process of doc-
umenting or finding the rationale of code commits will
benefit from the rich understanding provided by our model
(RQ2) of the specific pieces of information (components)
that developers may seek when they need it. Our model now
allows future research efforts to generate targeted pieces of
information to generate to improve the documentation of
rationale.
8.6. Our vision: what other benefits could arise

from good documentation of the rationale of
code commits?

In a longer timeline, we also anticipate further benefits
from having a codebase in which the rationale of code
commits is carefully documented. In projects with well-
crafted documentation of the rationale of code commits,
many future useful analyses may be possible. Next are some
of the kinds of analyses that we anticipate.

First, we expect that the documentation of the ratio-
nale for code commits may be useful data to improve the

traceability of software requirements to areas of the source
code. This is a well-known problem and research area, and
having richer data may help improve the accuracy of existing
techniques to infer traceability or inspire future ones.

Second, the documentation of rationale for code com-
mits may reveal hidden properties of the system, such as
dependencies among different program parts that are oth-
erwise not visible, assumptions that are not documented
elsewhere, or development team habits that are otherwise
not visible. Furthermore, the documentation of the rationale
of code changes in highly successful software projects, i.e.,
those with high quality, may reveal best practices that are
not necessarily documented (are implicit in their decision-
making), and from which other practitioners could learn.

The first step to studying the promise of these (or other)
ideas for useful software analytics would start by identifying
a current software project that already assigns high impor-
tance to documenting their code changes.

9. Threats to validity
9.1. Construct

To answer our research questions, we asked both open
and quantitative questions. We scheduled the interview ses-
sions to be relatively long (two hours), ensuring that we gave
the participants enough time to express their ideas and share
their thoughts. At the beginning of each interview section,
we asked the participants to “answer the questions in [their]
own words and provide as much detail as [they] feel is
relevant to address each question”. We also placed an open
question at the end of the interview to allow the participants
to share any additional information about the topic.
9.2. Internal

The methods we used in our study, interviews and sur-
veys, can be affected by bias and inaccurate responses. This
effect could be intentional or unintentional. We gave gift
cards to the interview participants and some survey partic-
ipants, which could have biased our results. We indicated
that the compensation is for the time spent and not the
answers given to mitigate these concerns. We repeatedly
and constantly used phrases to encourage the participants to
provide their own honest opinions, using the phrase “based
on your experience” in most of the questions. We also
clearly indicated that the participants should “feel free to
change/add/delete components or not.” Sometimes, we also
indicated that “there is no right or wrong answer; we are
interested in what you think and your perspective.”

We also took multiple steps to reduce potential confir-
mation bias [60] resulting from using a preliminary model.
We asked participants to describe their own examples and
decomposition of rationale into components before they
ever saw the preliminary model. We formed the preliminary
model based on knowledge from the research literature and
presented it neutrally. The fact that the preliminary was
largely extended from 9 components into 15 validates that
potential confirmation bias was minimal in our study.

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

25

Another threat to validity in our study is drawing conclu-
sions based on recollected memories [50]. We are interested
in capturing developers’ opinions about what components
constitute rationale, independently of how accurate their
recollection is. We encouraged participants to take their
time to recall situations and to report the components that
mattered in their experience.
9.3. External

Our studied developers may not fully represent the whole
developer population. To mitigate this threat, we recruited a
diverse population with diverse types and amounts of expe-
rience (Figure 2). Our studied population was similar to the
ones previously studied in the literature since we obtained
similar answers for our two questions about rationale that
were already studied by Tao et al. [79]. Furthermore, we
have reached saturation for qualitative analysis of our open-
ended interview questions (RQ1 and RQ6).

10. Conclusion
Developers invest valuable time and resources in the

process of discovering the rationale of code commits, which
they perform frequently and is difficult. However, any efforts
aiming to improve this process will necessarily require a
good understanding of the tasks for which rationale is needed
and the specific pieces of information that developers seek
when they search for rationale of code commits.

We applied a mixed-methods approach in this study.
First, we performed a series of interviews with software
developers to discover the components into which develop-
ers decompose the rationale of code commits, the tasks for
which rationale for code commits needed, software develop-
ers’ experiences (needing, finding, and recording) rationale
of code commits and its components, and the factors leading
developers to give up their search for rationale. Then, we ran
a survey to better understand developers’ experiences with
rationale of code commits.

We found that software developers decompose rationale
of code commits into 15 components along four themes.
We also found that they need rationale for code commits to
complete various software development tasks. We discov-
ered that software developers have different experiences with
different components. Developers need to find most com-
ponents with similar frequency. However, they mostly only
record and find those components automatically recorded
by revision control systems. We also discovered the factors
leading software developers to give up their search for ra-
tionale of code commits. This finding suggests that there is
space for both researchers and practitioners to improve the
practices of managing the rationale of code commits.

This work provides a detailed study of rationale for code
commits. Our decomposition of rationale for code commits
is a descriptive representation that practitioners can use to
improve their documentation and communication of ratio-
nale. Additionally, researchers and tool builders can support
the management of the rationale of code commits using our

discovered components of rationale and the experiences of
software developers with them.

11. Research Artifacts
An artifact containing our interview questions and sur-

vey instrument is available at https://doi.org/10.5281/

zenodo.5941775.

12. Acknowledgements
This material is based upon work supported by Univer-

sidad Rey Juan Carlos under an International Distinguished
Researcher award C01INVESDIST.

References
[1] Adolph, S., Hall, W., Kruchten, P., 2011. Using grounded the-

ory to study the experience of software development. Empirical
Software Engineering 16, 487–513. URL: https://doi.org/10.1007/
s10664-010-9152-6, doi:10.1007/s10664-010-9152-6.

[2] Aghajani, E., Nagy, C., Vega-Márquez, O.L., Linares-Vásquez, M.,
Moreno, L., Bavota, G., Lanza, M., 2019. Software documentation
issues unveiled, in: 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pp. 1199–1210. doi:10.1109/ICSE.
2019.00122.

[3] Alkadhi, R., Johanssen, J.O., Guzman, E., Bruegge, B., 2017a. Re-
act: An approach for capturing rationale in chat messages, in: 2017
ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), pp. 175–180. doi:10.1109/ESEM.
2017.26.

[4] Alkadhi, R., Lata, T., Guzmany, E., Bruegge, B., 2017b. Ra-
tionale in development chat messages: An exploratory study, in:
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pp. 436–446. doi:10.1109/MSR.2017.43.

[5] Alkadhi, R., Nonnenmacher, M., Guzman, E., Bruegge, B., 2018.
How do developers discuss rationale?, in: 2018 IEEE 25th Interna-
tional Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pp. 357–369. doi:10.1109/SANER.2018.8330223.

[6] Amyot, D., 2003. Introduction to the user requirements no-
tation: learning by example. Computer Networks 42, 285
– 301. URL: http://www.sciencedirect.com/science/article/

pii/S1389128603002445, doi:https://doi.org/10.1016/S1389-1286(03)
00244-5. iTU-T System Design Languages (SDL).

[7] Anton, A.I., 1996. Goal-based requirements analysis, in: Proceedings
of the Second International Conference on Requirements Engineer-
ing, pp. 136–144. doi:10.1109/ICRE.1996.491438.

[8] Aranda, J., Venolia, G., 2009. The secret life of bugs: Going past
the errors and omissions in software repositories, in: 2009 IEEE
31st International Conference on Software Engineering, pp. 298–308.
doi:10.1109/ICSE.2009.5070530.

[9] Barbudo, R., Ramírez, A., Servant, F., Romero, J.R., 2021. GEML: A
grammar-based evolutionary machine learning approach for design-
pattern detection. J. Syst. Softw. 175, 110919. URL: https://doi.

org/10.1016/j.jss.2021.110919, doi:10.1016/j.jss.2021.110919.
[10] Begel, A., Simon, B., 2008. Novice software developers, all over

again, in: Proceedings of the Fourth International Workshop on Com-
puting Education Research, Association for Computing Machinery,
New York, NY, USA. p. 3–14. URL: https://doi.org/10.1145/

1404520.1404522, doi:10.1145/1404520.1404522.
[11] Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zim-

mermann, T., 2008. What makes a good bug report?, in: Pro-
ceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ACM, New York, NY, USA.
pp. 308–318. URL: http://doi.acm.org/10.1145/1453101.1453146,
doi:10.1145/1453101.1453146.

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.5281/zenodo.5941775
https://doi.org/10.5281/zenodo.5941775
https://doi.org/10.1007/s10664-010-9152-6
https://doi.org/10.1007/s10664-010-9152-6
http://dx.doi.org/10.1007/s10664-010-9152-6
http://dx.doi.org/10.1109/ICSE.2019.00122
http://dx.doi.org/10.1109/ICSE.2019.00122
http://dx.doi.org/10.1109/ESEM.2017.26
http://dx.doi.org/10.1109/ESEM.2017.26
http://dx.doi.org/10.1109/MSR.2017.43
http://dx.doi.org/10.1109/SANER.2018.8330223
http://www.sciencedirect.com/science/article/pii/S1389128603002445
http://www.sciencedirect.com/science/article/pii/S1389128603002445
http://dx.doi.org/https://doi.org/10.1016/S1389-1286(03)00244-5
http://dx.doi.org/https://doi.org/10.1016/S1389-1286(03)00244-5
http://dx.doi.org/10.1109/ICRE.1996.491438
http://dx.doi.org/10.1109/ICSE.2009.5070530
https://doi.org/10.1016/j.jss.2021.110919
https://doi.org/10.1016/j.jss.2021.110919
http://dx.doi.org/10.1016/j.jss.2021.110919
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1145/1404520.1404522
http://dx.doi.org/10.1145/1404520.1404522
http://doi.acm.org/10.1145/1453101.1453146
http://dx.doi.org/10.1145/1453101.1453146
https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

26

[12] Biernacki, P., Waldorf, D., 1981. Snowball sampling: Problems
and techniques of chain referral sampling. Sociological
Methods & Research 10, 141–163. URL: https://doi.org/

10.1177/004912418101000205, doi:10.1177/004912418101000205,
arXiv:https://doi.org/10.1177/004912418101000205.

[13] Bradley, A.W., Murphy, G.C., 2011. Supporting software history
exploration, in: Proceedings of the 8th Working Conference on Min-
ing Software Repositories, ACM, New York, NY, USA. pp. 193–
202. URL: http://doi.acm.org/10.1145/1985441.1985469, doi:10.
1145/1985441.1985469.

[14] Breu, S., Premraj, R., Sillito, J., Zimmermann, T., 2010. Information
needs in bug reports: Improving cooperation between developers and
users, in: Proceedings of the 2010 ACM Conference on Computer
Supported Cooperative Work, Association for Computing Machinery,
New York, NY, USA. p. 301–310. URL: https://doi.org/10.1145/

1718918.1718973, doi:10.1145/1718918.1718973.
[15] Burge, J.E., Brown, D.C., 2008. Software engineering us-

ing rationale. Journal of Systems and Software 81, 395 –
413. URL: http://www.sciencedirect.com/science/article/pii/

S0164121207001203, doi:https://doi.org/10.1016/j.jss.2007.05.004.
[16] Burge, J.E., Carroll, J.M., McCall, R., Mistrik, I., 2008. Rationale-

Based Software Engineering. Springer Berlin Heidelberg, Berlin,
Heidelberg. URL: https://doi.org/10.1007/978-3-540-77583-6,
doi:10.1007/978-3-540-77583-6.

[17] Buse, R.P., Weimer, W.R., 2010. Automatically documenting pro-
gram changes, in: Proceedings of the IEEE/ACM International Con-
ference on Automated Software Engineering, ACM, New York, NY,
USA. pp. 33–42. URL: http://doi.acm.org/10.1145/1858996.1859005,
doi:10.1145/1858996.1859005.

[18] Codoban, M., Ragavan, S.S., Dig, D., Bailey, B., 2015. Software
history under the lens: A study on why and how developers examine
it, in: 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 1–10. doi:10.1109/ICSM.2015.7332446.

[19] Cortés-Coy, L.F., Linares-Vásquez, M., Aponte, J., Poshyvanyk, D.,
2014. On automatically generating commit messages via summa-
rization of source code changes, in: 2014 IEEE 14th International
Working Conference on Source Code Analysis and Manipulation, pp.
275–284. doi:10.1109/SCAM.2014.14.

[20] Dagenais, B., Ossher, H., Bellamy, R.K.E., Robillard, M.P., de Vries,
J.P., 2010. Moving into a new software project landscape, in: Proceed-
ings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, Association for Computing Machinery, New
York, NY, USA. p. 275–284. URL: https://doi.org/10.1145/1806799.
1806842, doi:10.1145/1806799.1806842.

[21] Davies, S., Roper, M., 2014. What’s in a bug report?, in: Proceed-
ings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ACM, New York, NY, USA.
pp. 26:1–26:10. URL: http://doi.acm.org/10.1145/2652524.2652541,
doi:10.1145/2652524.2652541.

[22] Dias, M., Bacchelli, A., Gousios, G., Cassou, D., Ducasse, S., 2015.
Untangling fine-grained code changes, in: 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineer-
ing (SANER), pp. 341–350. doi:10.1109/SANER.2015.7081844.

[23] Dutoit, A.H., McCall, R., Mistrík, I., Paech, B., 2006. Ra-
tionale Management in Software Engineering. Springer Berlin
Heidelberg, Berlin, Heidelberg. URL: https://doi.org/10.1007/

978-3-540-30998-7, doi:10.1007/978-3-540-30998-7.
[24] Dziekan, G., 2008. Checklists save lives. Bulletin of the World Health

Organization 86.
[25] Ebert, F., Castor, F., Novielli, N., Serebrenik, A., 2018. Communica-

tive intention in code review questions, in: 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp.
519–523. doi:10.1109/ICSME.2018.00061.

[26] Ebert, F., Castor, F., Novielli, N., Serebrenik, A., 2019. Confusion
in code reviews: Reasons, impacts, and coping strategies, in: 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp. 49–60. doi:10.1109/SANER.2019.
8668024.

[27] Fritz, T., Murphy, G.C., 2010. Using information fragments to answer
the questions developers ask, in: Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ACM,
New York, NY, USA. pp. 175–184. URL: http://doi.acm.org/10.

1145/1806799.1806828, doi:10.1145/1806799.1806828.
[28] G Jelihovschi, E., Faria, J., 2014. Scottknott: A package for perform-

ing the scott-knott clustering algorithm in r. TEMA (São Carlos) 15.
doi:10.5540/tema.2014.015.01.0003.

[29] Gautam, A., Vishwasrao, S., Servant, F., 2017. An empirical study of
activity, popularity, size, testing, and stability in continuous integra-
tion, in: 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pp. 495–498. doi:10.1109/MSR.2017.38.

[30] Gilson, F., Englebert, V., 2011. Rationale, decisions and alterna-
tives traceability for architecture design, in: Proceedings of the 5th
European Conference on Software Architecture: Companion Volume,
ACM, New York, NY, USA. pp. 4:1–4:9. URL: http://doi.acm.org/
10.1145/2031759.2031764, doi:10.1145/2031759.2031764.

[31] Graziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P., 2017a. On
the unhappiness of software developers, in: Proceedings of the 21st
International Conference on Evaluation and Assessment in Software
Engineering, Association for Computing Machinery, New York, NY,
USA. p. 324–333. URL: https://doi.org/10.1145/3084226.3084242,
doi:10.1145/3084226.3084242.

[32] Graziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P., 2017b.
Unhappy developers: Bad for themselves, bad for process, and bad for
software product, in: 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C), pp. 362–364. doi:10.
1109/ICSE-C.2017.104.

[33] Gruber, T.R., Russell, D.M., 1991. Design knowledge and design
rationale : A framework for representation , capture , and use.

[34] Gruber, T.R., Russell, D.M., 1996. Design rationale, L. Erlbaum
Associates Inc., Hillsdale, NJ, USA. chapter Generative Design Ra-
tionale: Beyond the Record and Replay Paradigm, pp. 323–349. URL:
http://dl.acm.org/citation.cfm?id=261685.261725.

[35] Hennink, M.M., Kaiser, B.N., 2019. Saturation in qualitative research.
URL: http://dx.doi.org/10.4135/9781526421036822322.

[36] Herzig, K., Zeller, A., 2011. Untangling changes .
[37] Herzig, K., Zeller, A., 2013. The impact of tangled code changes,

in: 2013 10th Working Conference on Mining Software Repositories
(MSR), pp. 121–130. doi:10.1109/MSR.2013.6624018.

[38] Hilton, M., Nelson, N., Tunnell, T., Marinov, D., Dig, D., 2017. Trade-
offs in continuous integration: Assurance, security, and flexibility,
in: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ACM, New York, NY, USA. pp. 197–
207. URL: http://doi.acm.org/10.1145/3106237.3106270, doi:10.
1145/3106237.3106270.

[39] ITU-T, 2018. User requirements notation (urn) – language definition.
URL: http://handle.itu.int/11.1002/1000/13711.

[40] Jarczyk, A.P.J., Loffler, P., Shipmann, F.M., 1992. Design rationale for
software engineering: A survey, in: Proceedings of the Twenty-Fifth
Hawaii International Conference on System Sciences, pp. 577–586
vol.2. doi:10.1109/HICSS.1992.183309.

[41] Jiang, S., Armaly, A., McMillan, C., 2017a. Automatically generating
commit messages from diffs using neural machine translation, in:
Proceedings of the 32Nd IEEE/ACM International Conference on Au-
tomated Software Engineering, IEEE Press, Piscataway, NJ, USA. pp.
135–146. URL: http://dl.acm.org/citation.cfm?id=3155562.3155583.

[42] Jiang, S., McMillan, C., 2017. Towards automatic generation of short
summaries of commits, in: 2017 IEEE/ACM 25th International Con-
ference on Program Comprehension (ICPC), pp. 320–323. doi:10.
1109/ICPC.2017.12.

[43] Jiang, S., McMillan, C., Santelices, R., 2017b. Do programmers do
change impact analysis in debugging? Empirical Software Engineer-
ing 22, 631–669. URL: https://doi.org/10.1007/s10664-016-9441-9,
doi:10.1007/s10664-016-9441-9.

[44] Jin, X., Servant, F., 2018. The hidden cost of code completion:
Understanding the impact of the recommendation-list length on its
efficiency, in: 2018 IEEE/ACM 15th International Conference on

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1177/004912418101000205
https://doi.org/10.1177/004912418101000205
http://dx.doi.org/10.1177/004912418101000205
http://arxiv.org/abs/https://doi.org/10.1177/004912418101000205
http://doi.acm.org/10.1145/1985441.1985469
http://dx.doi.org/10.1145/1985441.1985469
http://dx.doi.org/10.1145/1985441.1985469
https://doi.org/10.1145/1718918.1718973
https://doi.org/10.1145/1718918.1718973
http://dx.doi.org/10.1145/1718918.1718973
http://www.sciencedirect.com/science/article/pii/S0164121207001203
http://www.sciencedirect.com/science/article/pii/S0164121207001203
http://dx.doi.org/https://doi.org/10.1016/j.jss.2007.05.004
https://doi.org/10.1007/978-3-540-77583-6
http://dx.doi.org/10.1007/978-3-540-77583-6
http://doi.acm.org/10.1145/1858996.1859005
http://dx.doi.org/10.1145/1858996.1859005
http://dx.doi.org/10.1109/ICSM.2015.7332446
http://dx.doi.org/10.1109/SCAM.2014.14
https://doi.org/10.1145/1806799.1806842
https://doi.org/10.1145/1806799.1806842
http://dx.doi.org/10.1145/1806799.1806842
http://doi.acm.org/10.1145/2652524.2652541
http://dx.doi.org/10.1145/2652524.2652541
http://dx.doi.org/10.1109/SANER.2015.7081844
https://doi.org/10.1007/978-3-540-30998-7
https://doi.org/10.1007/978-3-540-30998-7
http://dx.doi.org/10.1007/978-3-540-30998-7
http://dx.doi.org/10.1109/ICSME.2018.00061
http://dx.doi.org/10.1109/SANER.2019.8668024
http://dx.doi.org/10.1109/SANER.2019.8668024
http://doi.acm.org/10.1145/1806799.1806828
http://doi.acm.org/10.1145/1806799.1806828
http://dx.doi.org/10.1145/1806799.1806828
http://dx.doi.org/10.5540/tema.2014.015.01.0003
http://dx.doi.org/10.1109/MSR.2017.38
http://doi.acm.org/10.1145/2031759.2031764
http://doi.acm.org/10.1145/2031759.2031764
http://dx.doi.org/10.1145/2031759.2031764
https://doi.org/10.1145/3084226.3084242
http://dx.doi.org/10.1145/3084226.3084242
http://dx.doi.org/10.1109/ICSE-C.2017.104
http://dx.doi.org/10.1109/ICSE-C.2017.104
http://dl.acm.org/citation.cfm?id=261685.261725
http://dx.doi.org/10.4135/9781526421036822322
http://dx.doi.org/10.1109/MSR.2013.6624018
http://doi.acm.org/10.1145/3106237.3106270
http://dx.doi.org/10.1145/3106237.3106270
http://dx.doi.org/10.1145/3106237.3106270
http://handle.itu.int/11.1002/1000/13711
http://dx.doi.org/10.1109/HICSS.1992.183309
http://dl.acm.org/citation.cfm?id=3155562.3155583
http://dx.doi.org/10.1109/ICPC.2017.12
http://dx.doi.org/10.1109/ICPC.2017.12
https://doi.org/10.1007/s10664-016-9441-9
http://dx.doi.org/10.1007/s10664-016-9441-9
https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

27

Mining Software Repositories (MSR), pp. 70–73.
[45] Kaiya, H., Horai, H., Saeki, M., 2002. Agora: Attributed goal-

oriented requirements analysis method, in: Proceedings IEEE Joint
International Conference on Requirements Engineering, pp. 13–22.
doi:10.1109/ICRE.2002.1048501.

[46] Kazerouni, A.M., Davis, J.C., Basak, A., Shaffer, C.A., Servant, F.,
Edwards, S.H., 2021. Fast and accurate incremental feedback for
students’ software tests using selective mutation analysis. J. Syst.
Softw. 175, 110905. URL: https://doi.org/10.1016/j.jss.2021.

110905, doi:10.1016/j.jss.2021.110905.
[47] Kazerouni, A.M., Shaffer, C.A., Edwards, S.H., Servant, F., 2019.

Assessing incremental testing practices and their impact on project
outcomes, in: Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, Association for Computing Machinery,
New York, NY, USA. p. 407–413. URL: https://doi.org/10.1145/

3287324.3287366, doi:10.1145/3287324.3287366.
[48] Ko, A., Myers, B., 2008. Debugging reinvented, in: 2008 ACM/IEEE

30th International Conference on Software Engineering, pp. 301–310.
doi:10.1145/1368088.1368130.

[49] Ko, A.J., DeLine, R., Venolia, G., 2007. Information needs in collo-
cated software development teams, in: 29th International Conference
on Software Engineering (ICSE’07), pp. 344–353. doi:10.1109/ICSE.
2007.45.

[50] Koriat, A., Goldsmith, M., Pansky, A., 2000. Toward
a psychology of memory accuracy. Annual Review of
Psychology 51, 481–537. URL: https://doi.org/10.1146/

annurev.psych.51.1.481, doi:10.1146/annurev.psych.51.1.481,
arXiv:https://doi.org/10.1146/annurev.psych.51.1.481. pMID:
10751979.

[51] Kunz, W., Rittel, H., 1970. Issues as Elements of Information
Systems. Number 131 in California. University. Center for Planning
and Development Research. Working paper, no. 131, Institute of
Urban and Regional Development, University of California. URL:
https://books.google.com/books?id=B-MaAQAAMAAJ.

[52] Kurtanović, Z., Maalej, W., 2017. Mining user rationale from
software reviews, in: 2017 IEEE 25th International Requirements
Engineering Conference (RE), pp. 61–70. doi:10.1109/RE.2017.86.

[53] L BERG, B., 2001. Qualitative research methods for the social
sciences .

[54] Lamsweerde, A.V., 2001. Goal-oriented requirements engineering:
A guided tour, in: Proceedings Fifth IEEE International Symposium
on Requirements Engineering, pp. 249–262. doi:10.1109/ISRE.2001.
948567.

[55] LaToza, T.D., Myers, B.A., 2010. Hard-to-answer questions about
code, in: Evaluation and Usability of Programming Languages and
Tools, ACM, New York, NY, USA. pp. 8:1–8:6. URL: http://doi.
acm.org/10.1145/1937117.1937125, doi:10.1145/1937117.1937125.

[56] Lee, J., Lai, K.Y., 1991. What’s in design rationale? Hum.-
Comput. Interact. 6, 251–280. URL: http://dx.doi.org/10.1207/

s15327051hci0603&4_3, doi:10.1207/s15327051hci0603\&4_3.
[57] Maalej, W., Tiarks, R., Roehm, T., Koschke, R., 2014. On the

comprehension of program comprehension. ACM Trans. Softw.
Eng. Methodol. 23, 31:1–31:37. URL: http://doi.acm.org/10.1145/
2622669, doi:10.1145/2622669.

[58] Murgia, A., Tourani, P., Adams, B., Ortu, M., 2014. Do develop-
ers feel emotions? an exploratory analysis of emotions in software
artifacts, in: Proceedings of the 11th Working Conference on Mining
Software Repositories, Association for Computing Machinery, New
York, NY, USA. p. 262–271. URL: https://doi.org/10.1145/2597073.
2597086, doi:10.1145/2597073.2597086.

[59] Pascarella, L., Spadini, D., Palomba, F., Bruntink, M., Bacchelli, A.,
2018. Information needs in contemporary code review. Proc. ACM
Hum.-Comput. Interact. 2, 135:1–135:27. URL: http://doi.acm.org/
10.1145/3274404, doi:10.1145/3274404.

[60] Pohl, R., Pohl, R., 2004. Confirmation bias, in: Cognitive Illusions:
A Handbook on Fallacies and Biases in Thinking, Judgement and
Memory. Psychology Press. chapter 4, pp. 79–96. URL: https:

//books.google.com/books?id=k5gTes7yyWEC.

[61] Potts, C., Bruns, G., 1988. Recording the reasons for design decisions,
in: Proceedings of the 10th International Conference on Software
Engineering, IEEE Computer Society Press, Los Alamitos, CA, USA.
pp. 418–427. URL: http://dl.acm.org/citation.cfm?id=55823.55863.

[62] Ram, A., Sawant, A.A., Castelluccio, M., Bacchelli, A., 2018. What
makes a code change easier to review: An empirical investigation
on code change reviewability, in: Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering,
Association for Computing Machinery, New York, NY, USA. p.
201–212. URL: https://doi.org/10.1145/3236024.3236080, doi:10.
1145/3236024.3236080.

[63] Rastkar, S., Murphy, G.C., 2013. Why did this code change?, in:
Proceedings of the 2013 International Conference on Software En-
gineering, IEEE Press, Piscataway, NJ, USA. pp. 1193–1196. URL:
http://dl.acm.org/citation.cfm?id=2486788.2486959.

[64] Roehm, T., Tiarks, R., Koschke, R., Maalej, W., 2012. How do
professional developers comprehend software?, in: Proceedings of
the 34th International Conference on Software Engineering, IEEE
Press, Piscataway, NJ, USA. pp. 255–265. URL: http://dl.acm.org/
citation.cfm?id=2337223.2337254.

[65] Rosen, C., Grawi, B., Shihab, E., 2015. Commit guru: Analytics and
risk prediction of software commits, in: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ACM, New
York, NY, USA. pp. 966–969. URL: http://doi.acm.org/10.1145/

2786805.2803183, doi:10.1145/2786805.2803183.
[66] Safwan, K.A., Servant, F., 2019. Decomposing the rationale of code

commits: The software developer’s perspective, in: Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software En-
gineering, Association for Computing Machinery, New York, NY,
USA. p. 397–408. URL: https://doi.org/10.1145/3338906.3338979,
doi:10.1145/3338906.3338979.

[67] Saunders, B., Sim, J., Kingstone, T., Baker, S., Waterfield, J., Bart-
lam, B., Burroughs, H., Jinks, C., 2018. Saturation in qualita-
tive research: exploring its conceptualization and operationalization.
Quality & Quantity 52, 1893–1907. URL: https://doi.org/10.1007/
s11135-017-0574-8, doi:10.1007/s11135-017-0574-8.

[68] Servant, F., 2013. Supporting bug investigation using history analysis,
in: 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 754–757. doi:10.1109/ASE.2013.
6693150.

[69] Servant, F., Jones, J.A., 2011. History slicing, in: 2011 26th
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2011), pp. 452–455. doi:10.1109/ASE.2011.6100097.

[70] Servant, F., Jones, J.A., 2012. History slicing: Assisting code-
evolution tasks, in: Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, Asso-
ciation for Computing Machinery, New York, NY, USA. URL: https:
//doi.org/10.1145/2393596.2393646, doi:10.1145/2393596.2393646.

[71] Servant, F., Jones, J.A., 2013. Chronos: Visualizing slices of source-
code history, in: 2013 First IEEE Working Conference on Soft-
ware Visualization (VISSOFT), pp. 1–4. doi:10.1109/VISSOFT.2013.
6650547.

[72] Servant, F., Jones, J.A., 2017. Fuzzy fine-grained code-history
analysis, in: Proceedings of the 39th International Conference on
Software Engineering, IEEE Press. p. 746–757. URL: https://doi.
org/10.1109/ICSE.2017.74, doi:10.1109/ICSE.2017.74.

[73] Singer, J., Sim, S.E., Lethbridge, T.C., 2008. Guide to Ad-
vanced Empirical Software Engineering. Springer London, Lon-
don. URL: https://doi.org/10.1007/978-1-84800-044-5, doi:10.1007/
978-1-84800-044-5.

[74] Spadini, D., Aniche, M., Storey, M.A., Bruntink, M., Bacchelli, A.,
2018. When testing meets code review: Why and how developers
review tests, in: Proceedings of the 40th International Conference
on Software Engineering, ACM, New York, NY, USA. pp. 677–
687. URL: http://doi.acm.org/10.1145/3180155.3180192, doi:10.
1145/3180155.3180192.

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1109/ICRE.2002.1048501
https://doi.org/10.1016/j.jss.2021.110905
https://doi.org/10.1016/j.jss.2021.110905
http://dx.doi.org/10.1016/j.jss.2021.110905
https://doi.org/10.1145/3287324.3287366
https://doi.org/10.1145/3287324.3287366
http://dx.doi.org/10.1145/3287324.3287366
http://dx.doi.org/10.1145/1368088.1368130
http://dx.doi.org/10.1109/ICSE.2007.45
http://dx.doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1146/annurev.psych.51.1.481
https://doi.org/10.1146/annurev.psych.51.1.481
http://dx.doi.org/10.1146/annurev.psych.51.1.481
http://arxiv.org/abs/https://doi.org/10.1146/annurev.psych.51.1.481
https://books.google.com/books?id=B-MaAQAAMAAJ
http://dx.doi.org/10.1109/RE.2017.86
http://dx.doi.org/10.1109/ISRE.2001.948567
http://dx.doi.org/10.1109/ISRE.2001.948567
http://doi.acm.org/10.1145/1937117.1937125
http://doi.acm.org/10.1145/1937117.1937125
http://dx.doi.org/10.1145/1937117.1937125
http://dx.doi.org/10.1207/s15327051hci0603&4_3
http://dx.doi.org/10.1207/s15327051hci0603&4_3
http://dx.doi.org/10.1207/s15327051hci0603&4_3
http://doi.acm.org/10.1145/2622669
http://doi.acm.org/10.1145/2622669
http://dx.doi.org/10.1145/2622669
https://doi.org/10.1145/2597073.2597086
https://doi.org/10.1145/2597073.2597086
http://dx.doi.org/10.1145/2597073.2597086
http://doi.acm.org/10.1145/3274404
http://doi.acm.org/10.1145/3274404
http://dx.doi.org/10.1145/3274404
https://books.google.com/books?id=k5gTes7yyWEC
https://books.google.com/books?id=k5gTes7yyWEC
http://dl.acm.org/citation.cfm?id=55823.55863
https://doi.org/10.1145/3236024.3236080
http://dx.doi.org/10.1145/3236024.3236080
http://dx.doi.org/10.1145/3236024.3236080
http://dl.acm.org/citation.cfm?id=2486788.2486959
http://dl.acm.org/citation.cfm?id=2337223.2337254
http://dl.acm.org/citation.cfm?id=2337223.2337254
http://doi.acm.org/10.1145/2786805.2803183
http://doi.acm.org/10.1145/2786805.2803183
http://dx.doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/3338906.3338979
http://dx.doi.org/10.1145/3338906.3338979
https://doi.org/10.1007/s11135-017-0574-8
https://doi.org/10.1007/s11135-017-0574-8
http://dx.doi.org/10.1007/s11135-017-0574-8
http://dx.doi.org/10.1109/ASE.2013.6693150
http://dx.doi.org/10.1109/ASE.2013.6693150
http://dx.doi.org/10.1109/ASE.2011.6100097
https://doi.org/10.1145/2393596.2393646
https://doi.org/10.1145/2393596.2393646
http://dx.doi.org/10.1145/2393596.2393646
http://dx.doi.org/10.1109/VISSOFT.2013.6650547
http://dx.doi.org/10.1109/VISSOFT.2013.6650547
https://doi.org/10.1109/ICSE.2017.74
https://doi.org/10.1109/ICSE.2017.74
http://dx.doi.org/10.1109/ICSE.2017.74
https://doi.org/10.1007/978-1-84800-044-5
http://dx.doi.org/10.1007/978-1-84800-044-5
http://dx.doi.org/10.1007/978-1-84800-044-5
http://doi.acm.org/10.1145/3180155.3180192
http://dx.doi.org/10.1145/3180155.3180192
http://dx.doi.org/10.1145/3180155.3180192
https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

28

[75] Spencer, D., Garrett, J., 2009. Card Sorting: Designing Usable
Categories. Rosenfeld Media. URL: https://books.google.com/

books?id=_h4D9gqi5tsC.
[76] Srinivasa Ragavan, S., Codoban, M., Piorkowski, D., Dig, D., Burnett,

M., 2019. Version control systems: An information foraging perspec-
tive. IEEE Transactions on Software Engineering , 1–1doi:10.1109/
TSE.2019.2931296.

[77] Tang, A., Babar, M.A., Gorton, I., Han, J., 2006. A survey of archi-
tecture design rationale. Journal of Systems and Software 79, 1792
– 1804. URL: http://www.sciencedirect.com/science/article/pii/

S0164121206001415, doi:https://doi.org/10.1016/j.jss.2006.04.029.
[78] Tang, A., Jin, Y., Han, J., 2007. A rationale-based architecture

model for design traceability and reasoning. Journal of Systems
and Software 80, 918 – 934. URL: http://www.sciencedirect.

com/science/article/pii/S0164121206002287, doi:https://doi.org/10.
1016/j.jss.2006.08.040.

[79] Tao, Y., Dang, Y., Xie, T., Zhang, D., Kim, S., 2012. How do
software engineers understand code changes?: An exploratory study
in industry, in: Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, ACM, New
York, NY, USA. pp. 51:1–51:11. URL: http://doi.acm.org/10.1145/
2393596.2393656, doi:10.1145/2393596.2393656.

[80] Toulmin, S.E., 2003. The Uses of Argument. 2 ed., Cambridge
University Press. doi:10.1017/CBO9780511840005.

[81] Tyree, J., Akerman, A., 2005. Architecture decisions: demystifying
architecture. IEEE Software 22, 19–27. doi:10.1109/MS.2005.27.

[82] Zhang, S., Ernst, M.D., 2014. Which configuration option should
i change?, in: Proceedings of the 36th International Conference
on Software Engineering, ACM, New York, NY, USA. pp. 152–
163. URL: http://doi.acm.org/10.1145/2568225.2568251, doi:10.
1145/2568225.2568251.

Khadijah Al Safwan is a Ph.D. candidate working with Dr. Francisco
Servant at the Department of Computer Science, Virginia Tech. She earned
her M.S. in ComputerScience from Virginia Tech in 2018, and her B.S. in
Computer Science from the University of Dammam (now Imam Abdulrah-
man Bin Faisal University) in Dammam, Saudi Arabia in 2015. Her interests
include software development in practice, empirical software engineering,
and software changes. Find her on the web at http://khsafwan.com/.
Mohammed ElArnaoty is a Ph.D. student working with Dr. Francisco
Servant at the Department of Computer Science, Virginia Tech. He earned
her M.S. in ComputerScience and his B.S. from Cairo University, Egypt.
His interests include empirical software engineering, Applied machine
learning in software engineering development in practice, and automated
software.
Francisco Servant is a Distinguished Researcher at Universidad Rey Juan
Carlos in Madrid, Spain. Before, he was an Assistant Professor in the
Department of Computer Science at Virginia Tech. He received a Ph.D. in
Software Engineering from the University of California, Irvine, and a B.S.
in Computer Science from the University of Granada, Spain. His research
focuses on software development productivity and software quality. Find
him on the web at https://fservant.com/.

Published version available at: https://doi.org/10.1016/j.jss.2022.111320

©2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/

https://books.google.com/books?id=_h4D9gqi5tsC
https://books.google.com/books?id=_h4D9gqi5tsC
http://dx.doi.org/10.1109/TSE.2019.2931296
http://dx.doi.org/10.1109/TSE.2019.2931296
http://www.sciencedirect.com/science/article/pii/S0164121206001415
http://www.sciencedirect.com/science/article/pii/S0164121206001415
http://dx.doi.org/https://doi.org/10.1016/j.jss.2006.04.029
http://www.sciencedirect.com/science/article/pii/S0164121206002287
http://www.sciencedirect.com/science/article/pii/S0164121206002287
http://dx.doi.org/https://doi.org/10.1016/j.jss.2006.08.040
http://dx.doi.org/https://doi.org/10.1016/j.jss.2006.08.040
http://doi.acm.org/10.1145/2393596.2393656
http://doi.acm.org/10.1145/2393596.2393656
http://dx.doi.org/10.1145/2393596.2393656
http://dx.doi.org/10.1017/CBO9780511840005
http://dx.doi.org/10.1109/MS.2005.27
http://doi.acm.org/10.1145/2568225.2568251
http://dx.doi.org/10.1145/2568225.2568251
http://dx.doi.org/10.1145/2568225.2568251
http://khsafwan.com/
https://fservant.com/
https://doi.org/10.1016/j.jss.2022.111320
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Related Work
	Rationale Management in Software Requirements, Design, and Architecture
	Rationale in Software Evolution and Maintenance
	Components of the Rationale of Code Changes
	Tasks that need the Rationale of Code Changes
	Experience with the Rationale of Code Changes

	Research Questions
	Theme 1: Tasks with Rationale Need
	Theme 2: Components of Rationale
	Theme 3: Experience with Rationale

	Research Method
	Developer Interviews
	Survey I
	Survey II
	Participants' Recruitment

	Theme 1: Tasks with Rationale Need
	RQ1: What are the tasks in which software developers need to find the rationale for code commits?
	Research Method
	Results

	RQ2: How often do developers seek the rationale of code commits within their team’s internal code vs. external code?
	Research Method
	Results

	Theme 2: Components of Rationale
	RQ3: Which components do software developers decompose the rationale of code commits into?
	Research Method
	Results

	Theme 3: Experience with Rationale
	RQ4: What is the experience of developers needing, finding, and recording the rationale of code commits?
	Research Method
	Results

	RQ5: What is the experience of developers needing, finding, and recording the individual components of the rationale of code commits?
	Research Method
	Results

	RQ6: What makes software developers give up their search for rationale of code commits?
	Research Method
	Results

	RQ7: Would comparing the experience of developers needing, finding, and recording the individual components of the rationale of code commits with each other reveal areas for improvement?
	Research Method
	Results

	Discussion and Implications
	Is the need for rationale of code commits different than the need for rationale in other contexts?
	Providing a better understanding of the need for rationale of code commits
	Our vision: how should practitioners document the rationale of code commits?
	Our vision: how could tools support developers in documenting the rationale of code commits?
	Our vision: how could the documentation of the rationale of code commits be automated?
	Our vision: what other benefits could arise from good documentation of the rationale of code commits?

	Threats to validity
	Construct
	Internal
	External

	Conclusion
	Research Artifacts
	Acknowledgements

