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Abstract

Identifying clone code fragments across different languages can enhance the productivity of software developers in several
ways. However, the clone detection task is often studied in the context of a single language and less explored for code
snippets spanning different languages. In this paper, we present OneSpace, a new cross-language clone detection
approach. OneSpace projects different programming languages to the same embedding space using both code and
API data. OneSpace, hence, leverages a Siamese Network to infer the similarity of the embedded programs. We
evaluate OneSpace by detecting clones across three language pairs; JAVA-Python, Java-C++ and Java-C. We compared
OneSpace with the other state-of-art techniques, SupLearn and CLCDSA. In our evaluation, OneSpace provided
higher effectiveness than the state of the art. Our ablation study validated some of our intuitions in designing OneSpace,
particularly that using a single embedding space (as opposed to separate ones) provides higher effectiveness. Additionally,
we designed a variant of OneSpace that uses Word-Mover-Distance Algorithm and provides lower effectiveness, but
is much more efficient. We also found that OneSpace provides higher effectiveness than the state of the art, even
for: complex implementations, single-method implementations, varying ratios of positive to negative clones in training,
varying amounts of training data, and for additional programming languages.
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1. Introduction

When developers copy and paste the same code frag-
ments (with or without minor adaptations), they pro-
duce code clones [100]. Code clones are very common
in software — multiple studies found that between 5%
and 50% of the code of software systems can be cloned
[13, 16, 35, 50, 62, 66, 72, 76, 84]. Code clones can be intro-
duced under diverse situations, e.g., when multiple algo-
rithms are very similar [76], due to coding style [16], by ac-
cident [1], when porting code to another programming lan-
guage [6], or for many other reasons [13, 16, 58, 61, 68, 84]
Code clones may exist within the same programming

language (i.e., single-language code clones) or in different
ones (i.e., cross-language code clones) [69].

Modern software systems are developed using multiple
programming languages [38, 82, 83]. For example, Net-
flix recently discontinued their monolingual development
in Java to move to a multilingual services ecosystem [47].
More broadly, recent studies found that software projects
now use between 2 – 5 languages in open source [82, 118],
and an average of 7 languages in industry [83].
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Some software projects contain clones for some (or all)
of their functionality in different programming languages,
to support multiple platforms. For example, the same
micro-services are often implemented in multiple languages
[44, 113]. Also Antlr, a widely used parser generator,
has versions implemented in Java, C#, JavaScript, and
Python [10]. Similarly, Lucene, a renowned text search
engine, offers implementations in Java and C# [8].
Unfortunately, software systems with code clones may

be harder to maintain [13, 57, 119]. This is primarily be-
cause, when developers change one code clone, they often
have to propagate those changes to several other clones (in
the same or different programming languages) [41].

To reduce the maintainability cost of code clones, auto-
matic clone detection research targets automatically sup-
porting developers in finding and tracking code clones,
e.g., [65, 77, 105, 124, 128]. In practice, developers run
automatic clone detection over their codebase as input,
and obtain as output the code pairs that the technique
estimates to be clones [28, 29]. This saves developers the
effort of identifying the clones manually.

Automatic (single or cross language) clone detection can
be beneficial in multiple software engineering tasks, e.g.,
reducing development time and costs [100], reducing the
proliferation of bugs and security vulnerabilities [100], effi-
ciently identifying reusable code as candidates for refactor-
ing [100], and reducing the time and cost of code porting
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and migration across programming languages [81].
Automatic (single or cross language) clone detection re-

duces development time by easing software maintenance.
When developers change one clone, automatic clone detec-
tion saves them the effort of manually finding all its other
clones, to consider changing them too [58, 84]. Performing
that process manually may be time-consuming and also
error-prone, since it may require understanding many di-
verse components of the software, possibly in many pro-
gramming languages.

Automatic (single or cross language) clone detection also
reduces the proliferation of bugs and security vulnerabil-
ities. When some code is found to be buggy [98] or vul-
nerable [29, 122], automatic clone detection is often used
to find its clones (sometimes in code ported to other lan-
guages [98]), to be able to resolve the issue in all the af-
fected clones. This saves developers the effort of manually
inspecting other areas of the code to find out if the same
bug or vulnerability also exists in other parts of the system.
This may also help developers to find additional potential
instances of the bug or vulnerability, reducing its prolifer-
ation. This approach to vulnerability detection is already
applied by software companies, e.g., at Microsoft [28, 29].

Automatic (single or cross language) clone detection also
helps developers when they decide to refactor a set of
clones into a single library, to reduce their maintenance
cost [19, 31, 128]. Automatic clone detection saves devel-
opers the effort of manually identifying all the code clones
that could be refactored into the library (or, e.g., into a
micro-service, when multiple languages will access it).

Automatic cross language clone detection may also re-
duce development time when porting or migrating code to
another programming language [6, 81]. For example, dur-
ing the porting of the video game “Fez” from Microsoft
Xbox to Sony PlayStation, the most significant challenge
was converting the original C# code to C++, due to lan-
guage differences [6]. Automatic clone detection may help
developers when porting code sections for which clones of
them already exist in the target language (e.g., they were
already ported for other projects, or they exist in online
repositories [77, 103]), by automatically finding such clones
for them. This may save developers the effort and error-
proneness of manually porting the code, or of manually
finding its existing ported clones.

Unfortunately, the majority of existing clone detection
techniques support a single programming language, e.g.,
[65, 77, 105, 124]. Our work focuses on a more challenging
instance of the clone-detection problem: cross-language
clone detection, i.e., the detection of equivalent code across
different programming languages.

A few techniques have been proposed for cross-language
clone detection. Some work only under specific circum-
stances, detecting cross-language code clones that, e.g.,
mostly evolved in parallel in their corresponding code
repositories [23, 24], have very similar size and struc-
ture [120], were implemented within the .NET framework
[2, 69], or can be executed within a time threshold. [80, 81].

Finally, two existing approaches have a more general
purpose, i.e., they do not impose such restrictions. These
are SupLearn [95] and CLCDSA [92]. SupLearn and
CLCDSA use machine learning (Siamese Neural Net-
works), to be able to apply to cross-language clones of
any programming language, irrespective of whether they
were developed in parallel or have similar structure, and
without requiring execution of the code under analysis.

In this paper, we present OneSpace, a cross-language
clone detection technique that achieves high effectiveness
by jointly training a single vector space for different pro-
gramming languages and leverages a Siamese network to
assess cross-lingual clones projected to this common space.
The main insight behind OneSpace is that its single-space
projection would assign close coordinates to semantically-
similar code tokens and use them to match code clones
across programming languages.

We performed eight experiments to evaluate OneSpace.
First (Section 5), we measured OneSpace’s effectiveness
to detect cross-language code clones across the Java and
Python languages, and we compared its results with the
state-of-the-art general-purpose cross-language clone de-
tection techniques, SupLearn [95] and CLCDSA [92].
Second (Section 6), we performed a sensitivity study to
understand the separate impact of each of our design de-
cisions in OneSpace. on its effectiveness. Next, we
also investigated how some characteristics of our evalua-
tion impact the effectiveness of OneSpace. So, in our
third Experiment (Section 7), we studied the effectiveness
of OneSpace and the state-of-the-art on an additional
dataset to see how these techniques generalize to imple-
mentations of higher complexity. In our fourth experi-
ment (Section 8), we studied the effectiveness of OneS-
pace in detecting single-method clones, as compared to
the state of the art techniques. Fifth (Section 9), we per-
formed an experiment to measure the efficiency of OneS-
pace for detecting cross-language code clones, which we
also compared to the state-of-the-art. Next, we studied
how some characteristics of the training data affect the
results of our evaluation. In our sixth experiment (Sec-
tion 10), we analyzed the impact of the ratio of positive
examples (i.e., true clones) to negative examples (i.e., false
clones) in the training set on the accuracy of OneSpace.
In our seventh experiment (Section 11), we analyzed the
impact of the amount of training data used on technique
effectiveness. Finally, we conducted an eighth experiment
(Section 12) to study the generalizability of our results
to other programming languages. We evaluated the effec-
tiveness of our studied techniques over the Java-C++ and
Java-C language pairs.
In our experiments, OneSpace obtained 41.02% Fmea-

sure score for cross-language clone identification (RQ1).
OneSpace strongly improved over the state-of-the-art
techniques SupLearn [95] and CLCDSA [92], which ob-
tained scores of 24.01% and 10.86% respectively. Our sen-
sitivity analysis (RQ2) showed that the component that
contributed most to OneSpace’s effectiveness was its em-
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bedding training step — embedding all languages into
a single shared space. Our experiments with the addi-
tional test data (RQ3) showed that OneSpace still out-
performs the state of the art when applied over more com-
plex programs, and also when evaluated over single meth-
ods (RQ4).

Our efficiency analysis (RQ5) showed the trade-off be-
tween two OneSpace variants, where each OneSpace
variant excelled in a different dimension: (1) using a
Siamese Neural Network for similarity inference achieved
higher f-measure effectiveness, but (2) using Word Mover
Distance for inference highly increased OneSpace ’s ef-
ficiency — reducing its f-measure. We also found that
OneSpace still outperformed the state-of-the-art tech-
niques for different ratios of clones to non-clones in the
training data (RQ6). In RQ7, OneSpace provided high
effectiveness for varying amounts of training data. As data
grew, OneSpace generally increased its Precision and low-
ered its Recall. Finally, our experiments on the additional
programming language pairs (RQ8) yielded comparable re-
sults to the Java-Python experiments. In them, OneS-
pace still outperformed the state of the art techniques in
all our studied language pairs.

Finally (Section 13), we also analyzed OneSpace as
well as the baselines in a different context, (in a rank-
ing context), to see how well they would perform for clone
search. This context offers an interesting perspective on
the effectiveness of the techniques since it measures not
only whether clones are detected, but also how accurately
they are ranked. This additional evaluation also allows
us to gain a more comprehensive understanding of the
strengths and weaknesses of our approach. In this new
evaluation, we measure the performance of the techniques
in terms of normalized discounted cumulative gain at ranks
(NDCG@k) In this context, OneSpace obtained a me-
dian NDCG@100 score of 63.28%, outperforming the other
techniques, which achieved scores of 30.38% and 22.47%
for SupLearn [95] and CLCDSA [92], respectively. This
suggests that OneSpace not only effectively detects cross-
language clones but also ranks them better than the state
of the art techniques.

This work provides the following contributions:

• A cross-language clone detection technique, OneS-
pace, that outperforms the state-of-the-art in terms
of effectiveness for detecting cross-language code
clones.

The technique is evaluated on different test sets of
varying complexity as well as on different program-
ming language pairs and outperforms the state of the
art in both clone detection and clone ranking con-
texts.

• An analysis of the components of OneSpace, showing
that the technique is most effective when using the
shared space idea with the Siamese Neural Network.

• A study of the efficiency of cross-language clone de-
tection techniques, demonstrating a trade-off between
effectiveness and efficiency of cross-language clone de-
tection: OneSpace is most effective when using a
Siamese Neural Network while OneSpace provided
its highest efficiency (but lower effectiveness) when
using the word mover distance metric for assessing
similarity.

• A thorough evaluation of the impact on the effective-
ness provided by OneSpace of: complex implementa-
tions, single-method implementations, ratio or train-
ing clones, amount of training data, and additional
programming languages.

2. Our Approach: OneSpace

OneSpace includes four main steps, which we show in
Figure 1. OneSpace identifies how likely it is that a pair
of code snippets in different programming languages are
clones (Prediction) by employing a Siamese Neural Net-
work.
The Siamese Neural Network learns from a Shared Em-

bedding Space that assigns close coordinates to words with
similar semantic meanings in different programming lan-
guages. The Shared Embedding captures the semantic
meaning of a word by observing its context (i.e., from the
words preceding and following it), ignoring the content of
the word itself, i.e., ignoring its syntax. This way, different
syntax constructs are assigned similar semantic meanings
when used in similar contexts, and the same syntax con-
struct is assigned different semantic meanings when it is
used in different contexts.

OneSpace obtains this Shared Embedding Space (Em-
bedding Space Training) by training it with examples of
code in different programming languages. To increase the
chances of functionally similar keywords in different pro-
gramming languages obtaining similar coordinates in the
Shared Embedding Space, OneSpace pre-processes the
training data (Data Preparation), adding the documenta-
tion of the API of the programming languages involved.
OneSpace trains its Siamese Neural Network by feeding
it examples of true and false cross language clones (Simi-
larity Network Training). Next, we describe these steps in
more detail.

2.1. Data Preparation
In this first step, OneSpace prepares the data to train

its Shared Embedding Space. As training data, OneS-
pace uses examples of code in multiple programming lan-
guages and the API documentation of those programming
languages.
The goal of training with API documentation in addi-

tion to source code is to further help the embedding al-
gorithm bridge the lexical gap between the different pro-
gramming languages. Different programming languages
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Figure 1: OneSpace flow diagram, in four steps; Data Preparation, Embedding Space Training, Similarity Network Training and Prediction

sometimes use different names for keywords, methods,
classes and libraries that express the same concepts, e.g.,
Java Hashtable vs. Python dictionary. The embedding
training can assign similar coordinates to these different
(but semantically similar) keywords if it observes that they
are often surrounded by similar textual contexts. Thus,
the goal of using API documentation (in addition to the
code examples) to train OneSpace’s embedding space is
to provide it with a larger number of samples of such dif-
ferent (but semantically similar) keywords being used in
similar contexts: (1) in the source code, being surrounded
by similar code keywords, and (2) in the API documenta-
tion, being surrounded by similarly worded explanations.

Given a collection of code examples in different program-
ming languages, and the API documentation of their pro-
gramming languages, OneSpace pre-processes the data
by tokenizing the code and documentation files and unify-
ing the naming style of all identifiers. This helps to ensure
that the data is in a consistent format and can be used
effectively by our search algorithm.

2.2. Embedding Space Training
In its second step, OneSpace uses the tokens obtained

in the Data Preparation step to train a Shared Embed-
ding Space. It will later use this Shared Embedding Space
to identify code clones in its Similarity Network Training
step.

The goal of OneSpace’s Shared Embedding Space is to
capture different keywords in different programming lan-
guages that have similar meanings, by assigning them sim-

ilar coordinates in a vector space. To achieve this, OneS-
pace trains a single, Shared Embedding Space for all the
desired programming languages. In contrast, the previous
work that applied embedding to cross-language clone de-
tection [95] used separate spaces for different programming
languages, which it then had to align to each other.

We believe that training a single Shared Embedding
Space for different programming languages will allow
OneSpace to provide higher effectiveness than if it
aligned separate embedding spaces that belong to differ-
ent programming languages. Different programming lan-
guages often have some lexical overlap — some language
constructs use similar names and developers sometimes use
similar identifier names across languages. Our intuition is
that this lexical overlap would guide the embedding step as
“anchors” in its space, and it would assign similar coordi-
nates to different words that are used with similar meaning
around them.

Similarly, we believe that training separate embedding
spaces would make it harder to assign similar coordinates
to words with similar meanings. In separate embedding
spaces for separate programming languages, we expect
that analogous semantic clusters of words would form in
both spaces — e.g., clusters forming with file processing
methods in each language’s space. However, finding a
transformation that aligns all semantic clusters between
spaces may often not be possible — a transformation that
brings one set of semantic clusters closer together may set
other set of semantic clusters further apart [123].
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Furthermore, shared embedding spaces have been ap-
plied successfully to other, different problems. For in-
stance, in the field of natural language processing, shared
embedding spaces improved performance in tasks such as
translation between natural languages [73] and natural
language understanding [34]. Therefore, it is possible that,
also in the domain of cross-language clone detection, a
unified embedding space would also be more successful at
capturing the same concepts (i.e., program specifications)
with different manifestations (i.e., implementations) into
a common representation (i.e., embedding). We study the
extent to which these intuitions are valid with an ablation
study in which we measure the success of our approach
with a shared vs. separate embedding spaces (see RQ2).

To train its Shared Embedding Space, OneSpace uses
the tokenized documents obtained from the previous step
(Data Preparation). Word embedding training takes as
input a textual corpus of documents containing tokens. In
OneSpace’s context, a document in the corpus is a source
code file or an API documentation webpage.

OneSpace’s Embedding Space Training step returns a
trained embedding space — a lookup table for all words in
the corpus — where words that have similar contexts are
located in closer coordinates to each other.

2.3. Similarity Network Training
After training its Embedding Space, OneSpace trains

its Siamese Neural Network. In this training, the Siamese
Neural Network learns to predict code clones based on the
coordinates of their tokens in the embedding space as well
as the order of such tokens.

OneSpace uses a Deep Siamese Neural Network [18]:
two identical sub-networks that use the same weights,
joined at their output layer. Each sub-network consists
of an embedding layer that turns the code tokens into vec-
tor representations, followed by two recurrent bidirectional
LSTM (Long-Short Term Memory) layers [45]. LSTM lay-
ers are a type of Recurrent Neural Network (RNN) archi-
tecture that are specifically designed to handle sequential
data, such as code, by allowing the network to selectively
remember important information and forget irrelevant in-
formation, which allows the model to effectively capture
the long-term dependencies in the code. The embedding
layers for the two sub-networks contain the pre-trained
shared embedding space that OneSpace obtained in its
Embedding Space Training step (Section 2.2).
Using a single set of weights for the two sub-networks

has the benefit of likely reducing overfitting [42], which we
expect would also improve effectiveness.

OneSpace trains its Siamese Neural Network using a
collection of positive (i.e., clone) and negative (i.e., not-
clone) pairs of implementations in different languages.
For each pair, OneSpace tokenizes the two implementa-
tions, embeds them, feeds them to the Siamese network’s
last layer, observes their ground-truth class (i.e., clone or
not-clone), and propagates the error back to update the
learned weights.

2.4. Prediction
In the final step, OneSpace is used to detect clone

pairs within a dataset of implementations in different lan-
guages. Given a dataset of Lang1-Lang2 implementation
pairs, OneSpace compares each Lang1 implementation
to its corresponding Lang2 implementation, and estimates
how likely it is that they are clones. Then, it predicts as
clones those with a likelihood above a certain threshold,
e.g., 0.5.

To assess the similarity between the two implementa-
tions of a given pair, OneSpace first tokenizes both im-
plementations as described in Section 2.1. Then, it applies
its identical embedding layers to transform the sequence of
tokens into sequence vector embeddings. Then, the LSTM
layers of the Siamese Network process the sequence vector
embeddings and the final layer calculates a probability of
the two sequences being clones.

3. Implementation Details

In this section, we describe the implementation details
of our approach, OneSpace, described in Section 2.

For its Data Preparation step (see Section 2.1), We
downloaded the official API documentation for Java SE-7
[94], Python 3.7.4 [97]from their official websites. OneS-
pace strips the HTML from the API documentation, and
then tokenizes the code data using the Python ”sctok-
enizer” library 2 and the documentation data using a sim-
ple text tokenizer. OneSpace also converts camel case
tokens to lowercase and remove underscore characters to
unify the naming style of all identifiers across different pro-
gramming languages. This is important because different
programming languages use different conventions for nam-
ing, such as camel case for Java or snake case for Python.

For the Embedding Space Training step (see Section 2.2),
we utilize a widely used technique called Continuous Bag
of Words (CBOW) Word2Vec algorithm [90, 91]. CBOW
is a popular method for word embedding, which captures
contextual information by predicting a target word based
on its surrounding words within a given context window.
In our approach, we set the context window size to 10,
which determines the number of words considered on both
sides of the target word. We also specify a word vector
dimension of 100, which determines the size of the vec-
tor representation for each word in the embedding space.
Additionally, we set a minimum frequency threshold of 10
for including words in the training process, which ensures
that only words occurring frequently enough in the data
are considered during the embedding training.

We chose to use Word2vec rather than the newer Code-
BERT model [12] because CodeBERT imposes a limit of
512 words per input (in our case, per processed implemen-
tation), which would have severely limited the practical

2https://pypi.org/project/sctokenizer/.
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usage of our approach. In fact, 30% of the tokenized im-
plementations in our experiments were longer than 512
words. Word2vec does not impose such a limit.

For the Similarity Network Training step, (see Sec-
tion 2.3) Our Siamese Neural Network consists of two iden-
tical sub-networks that use the same weights, connected at
their output layers. Each sub-network consists of an em-
bedding layer and two recurrent bidirectional LSTM lay-
ers, with the embedding layers containing the same pre-
trained shared embedding space. We use a binary cross-
entropy loss function as the objective function, an Adam
optimizer with Nesterov momentum and an early stop op-
tion. Each sub-network comprises two layers of 50 LSTM
cores with relu activation and a 0.25 drop-out rate.

For Prediction (Section 2.4), we flag as clones those pairs
with an estimated clone likelihood that is higher than 0.5.

4. Research Questions

We evaluate OneSpace with experiments that answer
eight research questions.

RQ1: How effective is OneSpace for detecting code
clones across programming languages?

RQ2: What is the impact of each individual com-
ponent of OneSpace on its effectiveness?

RQ3: How sensitive are the findings of RQ1 and
RQ2 to the complexity of clone implementa-
tions?

RQ4: How does effectiveness change in cross-
language clone detection for single methods?

RQ5: How efficiently does OneSpace provide its
cross-language code clone recommendations?

RQ6: How does the clone ratio in the training data
affect the effectiveness of the studied tech-
niques?

RQ7 : What is the impact of the amount of training
data on technique effectiveness?

RQ8: How effective is OneSpace for other pro-
gramming language pairs?

5. RQ1: How effective is OneSpace for detecting
code clones across programming languages?

First, we evaluate OneSpace ’s effectiveness by using
it to detect software clones in a dataset of cross-language
code clones across Java and Python. We study Java
and Python clones, as was done in previous studies, e.g.,
[92, 95]. To provide a reference point for assessing OneS-
pace ’s effectiveness, we also executed two state-of-the-art
cross-language clone-detection techniques, SupLearn [95]
and CLCDSA [92], over the same dataset. We compared
the effectiveness provided by OneSpace, SupLearn and
CLCDSA using three different metrics: Precision, Recall,
and Fmeasure.

5.1. Evaluation Dataset
In its typical usage, developers apply automatic clone

detection using their codebase as input [28, 29]. The in-
put codebase may contain any combination of modules
and projects (one or many, partial or complete) and pro-
gramming languages (in the case of cross-language clone
detection) [28, 29]. As output, automatic clone detection
techniques return an assessment of which code pairs in the
codebase are clones [28, 29, 100].
Clone detection techniques that are based on machine

learning also require a set of pre-labeled code clones in the
input codebase, for their training process. This is the case
for all our evaluated techniques: OneSpace (our proposed
approach), SupLearn [95], and CLCDSA [92]. If a code-
base has no pre-labeled clones yet (e.g., in the very first
run of the technique), developers may label some clones
manually, or they may add to the training set some pre-
labeled clones from other codebases.

To evaluate our studied techniques in a representative
setting, we needed a codebase with pre-labeled code clone
pairs in multiple programming languages. Building such
a codebase is inefficient and error-prone, since it requires
manually inspecting a large number of code pairs in the
codebase to assess and label which ones are clones. There-
fore, we used a codebase that was used in the original eval-
uation of all our studied techniques: the AtCoder dataset
[92, 95].
AtCoder is an independent, publicly-available codebase

with cross-language clone and non-clone code pairs. It
was compiled from a competitive programming website
[11], in which developers create implementations for given
software specifications. It only contains correct imple-
mentations, i.e., that were accepted by the website judg-
ing system as correctly fulfilling the specification [11, 95].
AtCoder provides an objective pre-labeled assessment for
which code pairs are clones i.e., those fulfilling the same
specification.

AtCoder contains 576 different software specifications,
divided into:

1. AtCoder-b which comprises 300 “beginner” problem
specifications — as specified in the AtCoder website,
and

2. AtCoder-r which comprises 276 “regular” problem
specifications — as specified in the AtCoder website.

Each specification has a number of implementations in
Java and a number of implementations in Python that
are clones of each other. In total, it contains 50,091 im-
plementations (20,828 in Java and 29,263 in Python). We
did not investigate the characteristics of this dataset be-
fore designing our technique, and thus the dataset did not
influence the design of our technique.
There are multiple reasons why we believe that the re-

sults obtained by our evaluated techniques in the AtCoder
codebase can be representative of the results that they
would obtain in other codebases.
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First, AtCoder contains a diverse set of software specifi-
cations, of varying purpose and complexity, written by di-
verse developers (with varying coding and problem-solving
styles). This helps represent the diversity of codebases
that are multi-lingual (and the diversity of developers
that contribute to them) — more than 15,000 projects in
Github are multi-lingual [118].

Second, AtCoder contains implementations of relatively
limited size — the median implementation in it contains
only one method. This helps represent the length of the
code fragments for which developers typically apply clone
detection (i.e., single methods) [80, 81].

Third, codebases from competitive programming (e.g.,
AtCoder) sometimes contain bugs and vulnerabilities [30].
This helps our experiments represent one of the most com-
mon usages of automatic clone detection — finding the
clones of code that is known to be buggy or vulnerable
[28, 29, 98, 122].
Fourth, past work obtained results on competitive pro-

gramming codebases that generalized to other codebases,
e.g., for code de-anonymization [21]. This supports our
expectation that results obtained on competitive program-
ming codebases would generalize to other codebases also
for other code analysis tasks, such as clone detection.

These may be some of the reasons why past work also
evaluated their cross-language clone detection techniques
with AtCoder, e.g., [92, 95].

5.2. Training and Testing Process
For RQ1, we followed the experiment design of Su-

pLearn [95] by evaluating our studied techniques over the
dataset’s 300 “beginner” specifications. We study “regu-
lar” specifications separately in RQ3 (see Section 7). We
query our studied techniques with Java-Python pairs of
implementations and ask them to predict which ones are
cross-language clones.

5.2.1. Training
We used 10-fold cross-validation, i.e., we randomly di-

vided the 300 specifications into 10 folds of 30 specifica-
tions each. We then tested our studied techniques sepa-
rately for each fold. For each fold, we trained the tech-
niques with the 270 specifications of the remaining 9 folds,
and with the 276 specifications for “regular” problems —
to take advantage of as much data as we had available.

Our studied techniques train their Siamese network with
positive (i.e., clones) and negative (i.e., not clones) ex-
amples of implementation pairs in different languages.
Training our studied techniques with every possible Java-
Python implementation pair in our training data would
take too long, given the combinatorial explosion of all pos-
sible pairs. Thus, we created a random sample of posi-
tive and negative examples from our dataset (i.e., sam-
pling from both “beginner” and “regular specifications”)
to train our studied techniques. For positive examples, we
randomly sampled 25 Java-Python clones from each speci-
fication. If a specification had fewer clones, we collected all

of them for it. This amounted to 13,435 positive examples,
sampled from all the 576 specifications. For negative ex-
amples, we randomly sampled 26,565 negative examples,
also from all specifications. We sampled approximately
double for the number of negative examples, since we ex-
pect them to be more common in the real world. Our
sampled positive and negative examples add up to 40,000
total examples for training.

For each testing fold, we trained our studied techniques
with our sampled positive and negative implementation
pairs for which both their Java and Python implementa-
tions addressed specifications in the remaining 9 folds of
“beginner” problems or specifications of “regular” prob-
lems. This resulted in a median of 37,239 training pairs
per testing fold.

This process represents how we expect the developers
would train our studied techniques to apply them to their
own codebases. We also describe in Sections 2.1, 2.2
and 3 how developers can run OneSpace’s Data Prepara-
tion step, processing the multi-language implementations
in their codebase.

To train our studied techniques, developers can use a
sample of the pre-labeled clones and non-clones in their
codebase, as described earlier in this section (and in:
Sections 2.3 and 3 for OneSpace; Section 5.3.2 for Su-
pLearn; and Section 5.3.3 for CLCDSA). Developers of-
ten have some pre-labeled clones in their codebase (e.g.,
manually labeled clones are a common manifestation of
self-admitted technical debt [15]), whereas non-clones can
be easily generated randomly if needed.

However, there may be some cases in which developers
may not have pre-labeled clones and non-clones in their
codebase, e.g., in the very first run of a clone detection
technique over a codebase. How to best address this situ-
ation is a known challenge that is currently being investi-
gated in the clone detection research field [129] — and is
thus beyond the scope of our paper.

There are various approaches that developers could take
to obtain some code clones for training in this initial ex-
ecution: manually labeling a limited number of clones in
their codebase, using pre-labeled clones from other code-
bases, synthesizing clones in their codebase using mutation
operators [99, 36], or using more complex program trans-
formations [127]. Our experiments resemble the approach
of using pre-labeled clones from other codebases, since we
trained our studied techniques with implementations for
specifications that were not implemented in the test set,
i.e., we kept the specifications (and implementations) in
the training and test sets separate.

Finally, for subsequent executions, developers can iter-
atively extend their training set with the clones identified
in the previous execution — extending the training set in
this way is known in machine learning as fine-tuning, and
it typically improves effectiveness [25, 46, 70, 34].
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5.2.2. Testing
For each testing fold, we used sampling again to address

the combinatorial explosion of implementation pairs that
techniques would have to evaluate, as is common in the
evaluation of clone-detection techniques [95, 117]. Our
testing folds had a median number of 1,589 Java imple-
mentations and 2,326 Python implementations. Taking
all combinations of these would have resulted in approxi-
mately 4 million Java-Python pairs that techniques would
have had to evaluate for each fold. Thus, for each test-
ing fold, we randomly sampled 1,000 implementations —
ensuring that they covered all specifications, with both
Java and Python files. We repeatedly sampled until this
condition was true. Sampling brought down the median
number of implementations per fold to 397 Java ones and
603 Python ones.

We evaluated our studied techniques over each possi-
ble Java-Python implementation pair from these sampled
implementations, resulting in a median of 239,375 Java-
Python implementation pairs evaluated per fold. In to-
tal for all folds, we evaluated 2,391,351 implementation
pairs, belonging to 300 specifications, 130,473 of which
were clones. The ratio of clones to non-clones is ≈ 1:17.

5.3. Studied Techniques
We evaluated three techniques over the same dataset:

our proposed approach OneSpace, and the two state-of-
the-art ones, SupLearn [95] and CLCDSA [92]. We
obtained the code for both the SupLearn and CLCDSA
techniques from their respective GitHub repositories [116,
27] and used them as baselines for comparison with our
proposed approach.

5.3.1. OneSpace
Our proposed approach is described in Section 2 and its

implementation details are explained in Section 3.

5.3.2. Suplearn
SupLearn [95] uses a Siamese Neural Network to pre-

dict whether a pair of implementations in different lan-
guages are clones. Given a pair of implementations, Su-
pLearn first extracts their ASTs and parses each AST
into a sequence of nodes. It then feeds the two node se-
quences to two separate embedding layers, one for each
language, to generate the embeddings of the program to-
kens. The two embedded spaces are connected to a multi-
layer Siamese Neural Network that predicts whether the
pair of implementations are clones or not.

For training, SupLearn uses as input a collection of
positive (i.e., clones) and negative (i.e., not clones) exam-
ples of implementation pairs in different languages. This
process informs the weights in its Siamese Neural Network.

Then, users can query SupLearn with a new pair of
implementations and it predicts whether they are clones.

There are multiple differences between the design of Su-
pLearn and our proposed technique OneSpace. First,

OneSpace uses a single embedding space, as opposed to
SupLearn’s two embedding spaces. We posit that this
design decision will allow OneSpace to provide higher ef-
fectiveness, because OneSpace will not have to align two
spaces that have been trained separately — such a process
can often be inaccurate [102, 123].

Also, using a single embedding space allows OneSpace
to use the typical Siamese Network weight sharing regular-
ization method. This is different to SupLearn, which uses
different weights for the Siamese Network sub-networks.
This weight sharing typically reduces the possibility of
overfitting and therefore is expected to achieve better gen-
eralization [42].

Finally, OneSpace models implementations extracting
the words used in them, instead of parsing their code to
obtain their AST (as in SupLearn). We introduced this
decision to make OneSpace easier to generalize to many
programming languages, i.e., it does not need to imple-
ment a new parser to obtain ASTs for each new program-
ming language.

5.3.3. CLCDSA
CLCDSA [92] applies two steps: action filter and pre-

diction. First, CLCDSA’s action filter discards improb-
able clones. Given a pair of implementations, the action
filter extracts all API calls in them, obtains the documen-
tation for each API call, and projects the documentation
into a word2vec text embedding space that was pre-trained
by Google [89]. The action filter then calculates all the
pairwise cosine similarities between the coordinates of all
the possible pairings of projected API-call-documentations
between the two implementations. Next, the action filter
sorts all pairs by cosine similarity and applies a greedy
approach to match individual API calls in one program
to (estimated corresponding) API-calls in the other pro-
gram. The action filter then computes the average cosine
similarity of the matched pairs. If the average cosine sim-
ilarity is lower than 0.5, it marks the two programs as an
improbable clone pair.

Second, for the implementation pairs that remain after
applying the action filter, CLCDSA applies its prediction
step. This step predicts whether a pair of implementations
are clones using a Siamese Neural Network with statistical
features as input. CLCDSA extracts 9 statistical features
for each implementation (18 features, 9 per implementa-
tion), e.g., its number of variables, its number of operators,
and its Cyclomatic complexity [85]. CLCDSA uses these
feature vectors to train its Siamese network. To predict if
a new implementation pair are clones or not, CLCDSA
queries its trained Siamese network.

The design of CLCDSA is very different form OneS-
pace. CLCDSA measures similarity between projected
embeddings, but it does so in a broad-strokes manner, only
to filter improbable clones. Also it compares very differ-
ent things than OneSpace does: CLCDSA compares the
projection of the documentation of the APIs used in the
implementations on a pre-trained model, and OneSpace
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compares the projection of the tokens used in the imple-
mentations using a model trained with cross-language im-
plementations and the complete API documentation of the
programming languages. Then, CLCDSA predicts clones
based on their similarity in terms of statistical features.
OneSpace predicts clones based on the semantic similar-
ity of the tokens used in their implementations as well
as their order. We anticipate that CLCDSA will suc-
cessfully predict clones that have very similar statistical
features, but will find it harder to predict clones with dif-
ferent statistical features, even if they use language that is
semantically very similar.

In our experiments, for a given test fold, CLCDSA
first applied its action filter to filter out less probable
clone pairs. Then, it used its Siamese network to predict
whether each of the remaining pairs are clones.

5.4. Evaluation Metrics
We evaluate cross-language clone detection using the

Precision, Recall, and Fmeasure metrics.

Precision: measures, within the pairs classified as clones,
the proportion of them that are true clones (as in
eq. (1)).

Precision = |{True clone pairs}∩{positively classified pairs}|
|{positively classified pairs}| · 100

(1)
Recall: measures the proportion of predicted true clones

out of all existing true clones in the test data (as in
eq. (2)).

Recall = |{True clone pairs}∩{positively classified pairs}|
|{True clone pairs}| · 100

(2)
Fmeasure: The harmonic mean of Precision and Recall.

Fmeasure = 2*Precision*Recall
Precision+Recall (3)

5.5. RQ1 Results
We report the results of our experiment to answer RQ1

in Table 1. To calculate the results, we constructed a con-
fusion matrix with all the implementation pairs within the
10 Java-Python testing folds, for each studied technique.
We then measured Recall, Precision, and Fmeasure on each
matrix, for each studied technique.

Our first observation from the results is that OneS-
pace provided higher effectiveness (Fmeasure) than the
state of the art techniques. OneSpace provided a higher
f-measure than SupLearn. It provided much higher Pre-
cision (by about 20 points) and higher Recall than Su-
pLearn (by about 9 points), leading to a high difference
in f-measure.

OneSpace also provided a higher f-measure than
CLCDSA. Although CLCDSA provided higher Recall
than OneSpace, it also provided very low Precision, re-
sulting in low f-measure.

Table 1: (RQ1) Effectiveness of OneSpace in terms of Recall, Pre-
cision and Fmeasure metrics compared to the baselines.

Approach Recall Precision Fmeasure
OneSpace 45.07 37.63 41.02
SupLearn 36.55 17.87 24.01
CLCDSA 71.11 05.88 10.86

Our second observation is the relatively low Precision of
all techniques. This may be because our studied testing
data contained a low ratio of clones to non-clones (≈ 1:17),
making it difficult to achieve high Precision.

Finally, It’s worth noting that in our experiments Su-
pLearn outperformed CLCDSA, even though CLCDSA
obtained higher f-measure than SupLearn in its original
evaluation [92]. This may be because of our evaluation
setup. In our evaluation, we applied cross-validation sep-
arating the training and testing sets in terms of problem
specifications. That is, the implementation pairs in the
testing set followed problem specifications that were dif-
ferent from the problem specifications that the implemen-
tation pairs of the training set followed. For example, in
the original evaluation of CLCDSA, it may have trained
its model using some implementation pairs for, e.g., quick-
sort, and then may have been asked to predict for other im-
plementation pairs of quick-sort. This may have improved
the effectiveness of CLCDSA in its original evaluation.

6. RQ2: What is the impact of each individual
component of OneSpace on its effectiveness?

In this research question, we evaluate the relative impor-
tance of each of OneSpace’s components on its effective-
ness. For that, we created three variants of OneSpace,
substituting each of its components by an alternative one.
We evaluated these variants with the same evaluation de-
sign that we used for RQ1 (see Section 5).

6.1. Studied Variants of OneSpace

We created three variants of OneSpace. Every variant
substitutes one of its components with a common alter-
native for the same purpose, i.e., data preparation, em-
bedding space training, and prediction. We depict these
variants in Figure 2, and we describe them below.

6.1.1. OneSpace-Code
We used this variant to study the importance of our

choice of including API specifications in OneSpace’s
training. This variant changes OneSpace’s data prepa-
ration step to train its shared embedding space only with
code, without analyzing the programming languages’ API
specifications (Figure 2.a). Analyzing only source code
is a common choice in clone-detection techniques e.g.,
[24, 95, 124].
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Figure 2: Sensitivity analysis. We studied four variants of OneSpace. Each one (each row) changes one of OneSpace’s components.

6.1.2. OneSpace-AlignedSpaces

We created this variant to study the importance of train-
ing OneSpace’s embedding as a single embedding space.
As we discussed in Section 2.2, we expect that training a
single embedding space (original OneSpace) would pro-
vide better alignments of semantically related concepts
than training separate spaces and aligning them after-
wards with a Neural Network (this variant).

This variant changes OneSpace’s language embedding
step to an alternative design: it trains two separate lan-
guage embeddings instead of one — one trained with Java
code and API docs, and the other with Python code and
API docs (Figure 2.b). This alternative embedding design
is common for aligning natural languages [102] and has
been also used to map API usages across programming
languages [93]. The design of this variant is also similar
to SupLearn’s, in that it uses two separate embedding
spaces that are later aligned by a Siamese network. How-
ever, it is different in that it trains its embedding spaces
from the tokens in the source code, while SupLearn trains
them from the AST nodes of the source code.

6.1.3. OneSpace-WMD

The goal of this variant is to understand the importance
of assessing similarity with a Siamese Neural Network.
This variant changes OneSpace’s prediction step to use
a different similarity assessment method: Word Mover’s
Distance (WMD) [71] (Figure 2.c). WMD measures the
minimum cumulative distance that needs to be traveled
from each word in a first document to match the cloud
of words in a second one. Measuring document similarity
with embedded spaces using WMD produced strong re-
sults in other domains, e.g., natural language processing
[60, 71, 75, 104].

OneSpace-WMD predicts an implementation pair as
clones when they are among the most similar within their
prediction batch. In practice, machine learning predictions
are often requested in batches, since it enables faster pre-
dictions [9, 67, 126]. Selecting a static similarity threshold
could have biased prediction, making it more likely to pre-
dict shorter implementations as clones. Therefore, OneS-
pace-WMD uses a threshold for each implementation pair
that is relative to the other pairs in their batch — aiming
to connect it to the larger context in which the prediction
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Table 2: (RQ2) Sensitivity Analysis Results.

Approach Recall Precision Fmeasure
OneSpace 45.07 37.63 41.02

OneSpace-Code 48.16 34.57 40.25
OneSpace-AlignedSpaces 36.88 17.89 24.10

OneSpace-WMD 28.70 22.62 25.30

is being requested. OneSpace-WMD batches together all
the implementation pairs that have the same Java imple-
mentation. Then, it predicts as clones those implementa-
tion pairs with the 7% lowest similarity of their batch. We
chose this value based on the lowest reported number for
percentage of clones in codebases in the literature, which
is estimated to be around 7-23% [17, 101].

6.2. RQ2 Results

We report in Table 2 the scores obtained by the three
variants of OneSpace that we studied, for all our studied
metrics.

OneSpace-Code obtained very close results to OneS-
pace. OneSpace-Code achieved slightly higher Recall
and lower Precision than the original variant, ending with
a slightly lower f-measure. This shows that using API doc-
umentation to train the Shared Embedding Space did have
a slightly positive impact on OneSpace’s effectiveness,
which validates our intuition when designing OneSpace
(see section 2.1), and also confirms its positive impact re-
ported in related work [92, 93].

OneSpace-AlignedSpaces achieved much lower effec-
tiveness than OneSpace for all metrics. This means that
OneSpace highly benefited from the decision of training
its embedding in a single Shared Embedding Space. This
observation validates the expectations that we described
when designing our approach: that a single embedding
space would achieve higher effectiveness than two embed-
ding spaces that are later aligned (see section 2.2).

This may also be the main reason why OneSpace
achieved much higher effectiveness than SupLearn in our
experiments to answer RQ1. SupLearn obtained very
similar effectiveness for all metrics than the OneSpace-
AlignedSpaces variant, and they both use separate em-
bedding spaces that are later joint with a Siamese Neural
Network.

OneSpace-WMD achieved much lower effectiveness
than OneSpace for all metrics. This validates our de-
sign choice of assessing similarity with a Siamese Neural
Network (see section 2.3), since it greatly benefited OneS-
pace’s effectiveness.
Summing up, OneSpace strongly benefited from two of

its design choices: training its embedding space as a single
space, and assessing similarity using a Siamese Neural Net-
work. It benefited more strongly from training a shared
embedding space, but it still benefited very strongly from
both choices.

7. RQ3: How sensitive are the findings of RQ1
and RQ2 to the complexity of clone implemen-
tations?

In RQ3, we study how much the findings in RQ1 and
RQ2 would change if we apply our studied techniques to
more complex implementations. The AtCoder dataset [11]
contains code clones from 300 “beginner” problem speci-
fications and 276 “regular” problem specifications. The
state-of-the-art cross-language clone-detection techniques
were evaluated only with “beginner” specifications [116]
or with a random sample from the mix of both “beginner”
and “regular” specifications [27]. In this paper, we present
the first study to evaluate cross-language clone-detection
techniques separately for the two kinds of specifications,
to understand the extent to which they perform differently
for each category.

7.1. Evaluation Dataset
The “regular” specifications in our dataset comprise our

AtCoder-r dataset. These specifications contain more
lines of code in their implementations (with a mean of
100.5 Java and 19.7 Python lines) than the “beginner”
specifications (with mean 44.1 and 12.2 Python lines).
They also have higher Cyclomatic Complexity in their im-
plementations (mean 16.4 in Java and 4.7 in Python) than
“beginner” specifications do (median 6.1 in Java and 3.5 in
Python). The dataset creators [95] characterize the “be-
ginner” implementations as less likely to follow completely
different algorithms to each other and thus being closer to
type III clones, while the “regular” specifications are con-
sidered closer to type IV.

7.2. Experiment Design
For this RQ, we repeated our experiments for RQ1 and

RQ2, using the AtCoder-r dataset for testing. We used a
similar training and testing process as we did for RQ1 and
RQ2.
First, we curated the dataset, discarding specifications

which had implementations in only one programming lan-
guage. Out of the 276 “regular” specifications in our
dataset, we kept the 210 ones that contained implementa-
tions for both Java and Python.
Then, we divided the specifications into folds, for train-

ing and testing. We randomly divided the 210 “regular”
specifications into 7 folds, to maintain the same number of
specifications per fold (30) as in RQ1 and RQ2. We then
tested our studied techniques separately for each fold.

7.2.1. Training Process
For each fold, we trained the techniques with the 180

specifications of the remaining 6 folds, and with the 300
specifications for “beginner” problems — to take advan-
tage of as much data as we had available (as we did for
RQ1 and RQ2). That is, we used the same training data
as in RQ1 and RQ2 (see Section 5.2.1). This training data
originally contained positive and negative examples from
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Table 3: (RQ3) Results of Studied techniques on AtCoder-r regular
specifications.

Approach Recall Precision Fmeasure
OneSpace 50.11 20.17 28.76

OneSpace-Code 51.35 19.23 27.98
OneSpace-AlignedSpaces 38.73 11.13 17.29

OneSpace-WMD 22.80 21.26 22.00
SupLearn 37.74 10.72 16.69
CLCDSA 67.31 07.23 13.05

both beginner and regular specifications. For each regu-
lar specification fold we tested on, we trained our studied
techniques with our sampled positive and negative exam-
ples for which both their Java and Python implementa-
tions addressed specifications in the remaining 6 folds of
AtCoder-r dataset or specifications of AtCoder-b dataset.
This resulted in a median of 37,660 training pairs per fold.

7.2.2. Testing Process
For testing, we also sampled implementations from our

testing fold, to limit the combinatorial explosion of our
evaluated Java-Python pairs. As we did in RQ1 and RQ2,
we randomly sampled 1,000 implementations from each
fold, ensuring that all sampled specifications had both
Java and Python implementations. After sampling, our
tested folds had a median of 486 Java implementations
and 514 Python implementations. We evaluated our stud-
ied techniques over each possible Java-Python implemen-
tation pair from these sampled implementations, result-
ing in a median of 249,775 Java-Python implementation
pairs evaluated per fold. In total for all folds, we eval-
uated 1,561,465 implementation pairs, 100,237 of which
were clones. The ratio of clones to non-clones is ≈ 1:15.

7.3. RQ3 Results
Tables 3 shows the scores obtained by all techniques in

this experiment. We applied metrics as we did for RQ1 in
Table 1.

We found that most techniques obtained lower effective-
ness for “regular” specifications than for “beginner” ones
— except CLCDSA. However, the relative differences of
effectiveness between techniques remained. This means
that most of the observations that we made in RQ2 are
also valid for more complex specifications.

OneSpace still provided the highest effectiveness (f-
measure), largely improving over every other technique.
OneSpace-Code provided slightly lower (but very close)
Precision, Recall, and f-measure to OneSpace, showing
again that our choice of training with the API documen-
tation had a limited (but positive) influence. Also again,
OneSpace-AlignedSpaces and SupLearn provided sim-
ilar results to each other, since they use similar de-
signs. This again validates our expectation that us-
ing a single embedding space provides higher effective-
ness (i.e., OneSpace was more effective than OneSpace-
AlignedSpaces).

OneSpace-WMD provided lower effectiveness (f-
measure) than OneSpace, but not too much lower. This
may be a beneficial property to make it a good tech-
nique to use in situations when the efficiency of the tech-
nique is very important, e.g., when a large amount of
implementations need to be requested in a large batch.
Even though OneSpace-WMD provided lower effective-
ness than OneSpace, the difference in effectiveness be-
tween them is lower for more complex specifications, and
OneSpace-WMD is faster than OneSpace (we observe
that in our experiment for RQ5).

For CLCDSA, while its effectiveness (f-measure) im-
proved, it remained fairly low. It’s possible that this slight
improvement (particularly in terms of Precision) may be
because larger programs allowed the action filter to more
easily filter out non-clones (for larger programs, non-clones
are less likely to use semantically related APIs, and thus
are easier to identify as non-clones).

8. RQ4: How does effectiveness change in cross-
language clone detection for single methods?

Clone detection techniques are typically applied for the
granularity of methods, i.e., to detect multiple methods
implementing the same functionality. However, our previ-
ous research questions evaluated techniques over a dataset
in which clones could be single-method or multi-method
(as was the case in the original evaluations of our studied
state-of-the-art techniques [92, 95]).

We also wanted to obtain a better understanding of tech-
nique effectiveness at the granularity of individual meth-
ods. So, we performed an additional experiment. We ap-
plied all our studied techniques and variants over imple-
mentations from our dataset that only included a single
method.

8.1. Experiment Design
We used the same methodology as in RQ1, RQ2, and

RQ3, but this time including only single-method imple-
mentations. That is, we evaluated OneSpace, all its
variants, SupLearn, and CLCDSA over our studied im-
plementation pairs from the AtCoder-b and AtCoder-r
datasets that were single-method.

8.2. Evaluation Dataset
We identified single-method implementations in the fol-

lowing way: For Python, we wrapped all method-free code
in a single method called “solve”, which we called at the
beginning of the main method. We created a main method
if it didn’t exist. Then, we counted the number of methods
in the implementation, excluding the main method when
it only contained a single call to “solve”. For Java, we
counted the number of methods within the class(es), ex-
cluding the main method when it only had a single call to
one of the existing methods. For both Java and Python, we
marked implementations as single-methods if their count
of methods was 1.
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8.3. Training and Testing
We used the same training data as in RQ1 and RQ2

for AtCoder-b (see Section 5.2.1), and in RQ3 (see Sec-
tion 7.2.1) for AtCoder-r.
We tested techniques with the implementation pairs

that we sampled in RQ1 and RQ2 for AtCoder-b (see Sec-
tion 5.2.2), and in RQ3 (see Section 7.2.2) for AtCoder-r,
but using only those pairs for which both implementations
were single-method. We also performed cross-validation,
keeping the same folds, but only including the testing pairs
that contained a single method for both the Java and
Python implementations within each fold.

For AtCoder-b, the resulting folds had a median 28 spec-
ifications, median 153,136 single-method Java-Python im-
plementation pairs. In total for AtCoder-b, this experi-
ment evaluated 1,478,665 single-method Java-Python im-
plementation pairs, out of the 2,391,351 pairs that we eval-
uated for RQ1 and RQ2. 86,551 of these were clones. The
ratio of clones to non-clones is ≈ 1:16.

For AtCoder-r, the resulting folds had a median 28 spec-
ifications, median 73,920 single-method Java-Python im-
plementation pairs. In total for AtCoder-r, this experi-
ment evaluated 492,970 single-method Java-Python imple-
mentation pairs, out of the 1,561,465 pairs that we evalu-
ated for RQ1 and RQ2. 39,312 of these were clones. The
ratio of clones to non-clones is ≈ 1:12.

8.4. Results.
We report the results of this experiment in Table 4.

When considering only single-method implementations,
our approach OneSpace still provided the highest ef-
fectiveness (f-measure). It provided higher effectiveness
(f-measure) than its variants, and than the state-of-the-
art techniques SupLearn and CLCDSA, for both the
AtCoder-b and AtCoder-r datasets.

All our studied techniques obtained higher f-measure in
this experiment than in previous experiments, for all met-
rics and datasets (particularly for AtCoder-r). In other
words, all techniques were more successful when detecting
single-method clones. Again, the relative differences of ef-
fectiveness between techniques remained as in RQ1, RQ2,
and RQ3.

In terms of techniques, OneSpace again provided the
highest f-measure in this experiment, followed by Su-
pLearn, and CLCDSA, respectively (as in RQ1, RQ2
and RQ3). Also again, SupLearn provided lower Recall
and Precision than OneSpace, and CLCDSA provided
higher Recall than other techniques, but at the expense of
providing very low Precision.

In terms of variants of OneSpace, their f-measure
also compared to each other as it did in RQ1, RQ2 and
RQ3. OneSpace-Code provided very similar f-measure
to OneSpace, showing again that training with API doc-
umentation had limited (positive) impact. OneSpace-
AlignedSpaces and OneSpace-WMD provided f-measure
similar to each other, and a bit below OneSpace-Code.

This again validates our expectation that using a single
embedding space provides higher effectiveness.

9. RQ5: How efficiently does OneSpace provide its
cross-language code clone recommendations?

In RQ5, we aim to understand the efficiency with which
our studied techniques provide their recommendations.
We measured the execution time of each of our studied
techniques, executing them for a randomly selected test-
ing fold out of the ten folds that we investigated (see sec-
tion 5.2). We executed all the techniques over the same
fold.

The randomly selected testing fold contained 242,079
Java-Python implementation pairs — all the possible com-
binations of 411 Java implementations and 589 Python
implementations. To expedite the experiment, and as is
often done in practice, we grouped these pairs into batches
[67, 126]. Each batch contained all the pairs correspond-
ing to each Java implementation, paired with each one of
the Python implementations. We queried each technique
for each of the 411 batches, and we recorded the time that
they took to provide the results. This effort took a total of
32 hours. We ran all these experiments serially in a sin-
gle machine: a 2-core Windows machine with 4.10 GHz
processor speed and 16 GB of memory.

We also measured the one-time training time of each
of our studied techniques. OneSpace, OneSpace-Code,
OneSpace-AlignedSpaces, and SupLearn required ap-
proximately 12 hours of training each (using 10 epochs for
training). OneSpace-WMD took around 7 minutes for
training, since it only trains its embedding space (it does
not use a Siamese Neural Network). CLCDSA took only
15 minutes, because its Neural Network uses a low number
(18) of features.
Nevertheless, the focus of this study is the testing time of

our studied techniques. In practice, developers only need
to train their technique once (or once every few months, to
refresh them), but they will have to run their testing step
for each queried implementation pair. Next, we present
the testing time of our studied techniques.

9.1. RQ5 Results
Figure 3 presents the timings that we collected for our

studied techniques. Each box in the boxplot represents the
distribution of durations that we measured for each batch
for each technique. To compare the distribution of du-
rations measured for OneSpace and for every other tech-
nique, we tested for statistical significance with a Wilcoxon
one-tailed paired test (since the distributions of data were
not normal, and the scores were paired), and found that
all such differences were statistically significant (p < 0.05).

OneSpace, OneSpace-Code, OneSpace-
AlignedSpaces, and SupLearn took about 60
seconds to produce the results of a single batch. While
this execution time is reasonable, these techniques were

13



Table 4: (RQ4) Detecting single method clones using various approaches on AtCoder-b and AtCoder-r datasets.

Approach AtCoder-b results AtCoder-r results
Recall Precision Fmeasure Recall Precision Fmeasure

OneSpace 48.85 48.96 48.91 52.08 40.74 45.72
OneSpace-Code 51.61 45.77 48.52 51.11 39.61 44.63

OneSpace-AlignedSpaces 43.51 22.36 29.54 47.47 20.07 28.21
OneSpace-WMD 31.11 26.27 28.49 25.06 29.32 27.03

SupLearn 43.73 22.29 29.53 50.23 17.50 25.95
CLCDSA 89.76 06.07 11.36 94.50 08.22 15.12

Time in seconds per batch for beginner specifications 

Figure 3: Box plot for the inference times per batch of all techniques
.

slower than the other studied techniques. This is because
they apply a Siamese Neural Network with recurrent
LSTM layers that recursively process the program tokens.

OneSpace-WMD took a median of just under 20 sec-
onds to produce the results. This execution time was faster
than the majority of our studied techniques, with the ex-
ception of CLCDSA. The main reason why this technique
was faster than most is that it does not use a recurrent
Siamese Neural Network. It instead uses a similarity met-
ric (Word Mover Distance), which is often fast to apply
[71].

Finally, CLCDSA was the fastest technique, with an ex-
ecution time of 2-3 seconds for most batches. CLCDSA
uses a Siamese Neural Network, which should make its
efficiency be within the range of OneSpace’s and Su-
pLearn’s. However, it contains three characteristics that
together make it highly efficient. First, its action filter
quickly discards many of the candidate implementations,
and thus avoids analyzing them in the Siamese Neural Net-
work. Second, its Siamese Neural Network doesn’t contain
any recurrent layers. Third, its Siamese Neural Network
uses a low number of features, making its prediction fast.

We also compared the results for RQ5 with the results
for RQ1 and RQ2 to observe trade-offs between effective-
ness and efficiency. First, we observed that while OneS-
pace and OneSpace-code were among the least efficient

techniques, they were by far the most effective ones (and
it still provided acceptable efficiency). Next, we also ob-
served that while CLCDSA was the most efficient tech-
nique, it provided very low effectiveness. Next, OneS-
pace-WMD provided a middle ground of effectiveness and
efficiency. It was less effective than the best (OneSpace),
but it was also faster. This variant may be a reasonable
technique when its gain in efficiency (both to query and
to train) may counterbalance its loss in effectiveness. Fi-
nally, OneSpace-AlignedSpaces and SupLearn provided
an undesirable trade-off: they provided both low effective-
ness and low efficiency.

10. RQ6: How does the clone ratio in the train-
ing data affect the effectiveness of the studied
techniques?

In previous experiments, we trained our evaluated tech-
niques with a ratio of 1:2 positive (clone) to negative (non-
clone) pairs of implementations. This ratio in the train-
ing data influences how inclined a technique is to predict
whether a new pair of implementations are clones or not.
Therefore, it can impact its results.

In this research question, we study how different ratios
of positive to negative clones impacts the effectiveness of
our studied techniques.

10.1. Experiment Design
We used the same methodology as in RQ1 for AtCoder-

b (see Section 5.2), and in RQ3 for AtCoder-r (see Sec-
tion 7.2), but this time modifying the ratio of clones to
non-clones in the training data.
We used the same testing data as in RQ1 for AtCoder-

b (see Section 5.2.2), and in RQ3 (see Section 7.2.2) for
AtCoder-r.
We trained techniques with the implementation pairs

that we sampled in RQ1 for AtCoder-b (see Section 5.2.1),
and in RQ3 (see Section 7.2.1) for AtCoder-r. We reused
the same sampled positive (clone) and negative (non-
clone) Java-Python implementation pairs that we sampled
in those experiments. To produce higher than 1:2 posi-
tive to negative ratios, we randomly sampled additional
negative implementation pairs. To produce the lower 1:1
positive to negative ratio, we randomly removed negative
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Table 5: (RQ6) Impact of true and false clone tatio on detection accuracy for various techniques.

Approach Clone Ratio AtCoder-b results AtCoder-r results
Recall Precision Fmeasure Recall Precision Fmeasure

OneSpace

1:1 64.83 20.51 31.16 66.60 13.49 22.43
1:2 45.07 37.63 41.02 50.11 20.17 28.76
1:3 36.42 43.00 39.44 36.15 23.83 28.72
1:4 29.97 53.96 38.54 29.66 26.12 27.78

SupLearn

1:1 67.93 09.45 16.60 53.41 08.31 14.38
1:2 36.55 17.87 24.01 37.74 10.72 16.69
1:3 36.85 10.08 15.83 50.37 09.60 16.12
1:4 32.08 10.61 15.94 36.92 08.35 13.62

CLCDSA

1:1 96.47 05.60 10.58 81.59 06.02 11,21
1:2 71.11 05.88 10.86 67.31 07.23 13.05
1:3 61.66 06.24 11.33 44.70 06.51 11.36
1:4 59.20 06.13 11.10 41.13 06.60 11.38

implementation pairs from the sample. For the 1:2 ratio,
we directly report the results from RQ1 and RQ3.

10.2. Results
We report the results for this experiment in Table 5. Our

studied techniques showed similar trends for AtCoder-b
and AtCoder-r.

Our first observation in Table 5 is that, as in previous re-
search questions, OneSpace provided a higher f-measure
than the state-of-the-art SupLearn, CLCDSA (irrespec-
tive of the applied ratio of clones to non-clones in training).
Then, we observed different trends in Recall and Precision
for different techniques.

OneSpace showed an expected trend as the clone ra-
tio increases: its Precision increased and its Recall de-
creased. As training contained more and more negative
clones, OneSpace became more inclined to predict im-
plementation pairs as non-clones, which made it achieve
higher Precision and lower Recall.

SupLearn showed a different trend to OneSpace.
When going from a 1:1 to 1:2 clone:non-clone ratio, Recall
decreased and Precision increased, as expected. However,
when going from 1:2 to 1:3 and 1:4, SupLearn Precision
also decreased. It is possible that the larger amounts of
non-clones in the training data influenced SupLearn so
strongly that it ended up predicting so many non-clones
that it lost both false positives (false clones) and true pos-
itives (true clones).

Finally, CLCDSA showed a very similar trend to Su-
pLearn. As the number of non-clones increased in train-
ing, CLCDSA decreased its Recall, but very lightly in-
creased its Precision. A possible explanation is that
CLCDSA predicted more non-clones as the training data
contained more non-clones, making it decrease Recall, but
not increasing Precision as strongly, since it still kept its
strong bias towards predicting clones. We can also observe
that, as in previous research questions, that CLCDSA
generally provided very low Precision.

11. RQ7 : What is the impact of the amount of
training data on technique effectiveness?

The effectiveness of machine learning techniques is in-
fluenced by the amount of data that is used to train them.
Normally, adding training data increases the effectiveness
of machine learning techniques, but it is not clear how
much is enough to obtain accurate predictions.

In this research question, we study how different
amounts of training data impact the effectiveness of our
studied techniques.

11.1. Experiment Design
We used the same methodology as in RQ1 for AtCoder-

b (see Section 5.2), but this time iteratively modifying
the amount of data that we used for training. In this
experiment, we only evaluated OneSpace.

For testing, we randomly selected one of the 10 folds
that we used for testing in RQ1 (see Section 5.2.2). This
fold had 242,079 implementation pairs, 11,704 of which
were clones. The ratio of clones to non-clones is ≈ 1:20.
We evaluated OneSpace 9 times on this same testing fold,
changing the training data each time.
For training, we used the implementation pairs that we

used in RQ1 for training when evaluating our randomly-
selected testing fold (see Section 5.2.1). We randomly di-
vided this training set into 9 equal subsets (i.e., incre-
ments), and we used them incrementally for training. That
is, we first trained using increment 1 and tested in our ran-
domly selected fold, then trained using increments 1 and 2
and tested in our randomly selected fold, and so on. Each
one of these training increments also kept the same pos-
itive to negative ratio as the original training set (1:2).
Each increment had approximately 4,000 implementation
pairs.

11.2. Results
We report the results for this research question in Ta-

ble 6. The general trend that we can see in these results is
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Table 6: (RQ7) Results of OneSpace on a random fold with different
amount of training data. Each row represents the Recall, Precision
and Fmeasure of the results obtained by training with n increments
and testing using the implementations of the pre-selected random
fold.

Training increments #examples Recall Precision Fmeasure
increment 1 ≈ 4k 22.46 26.65 24.38

increments 1 and 2 ≈ 8k 55.58 20.90 30.38
increments 1 to 3 ≈ 12k 54.72 23.13 32.51
increments 1 to 4 ≈ 16k 47.92 30.27 37.10
increments 1 to 5 ≈ 20k 49.99 28.52 36.32
increments 1 to 6 ≈ 24k 42.78 33.61 37.64
increments 1 to 7 ≈ 28k 44.25 35.86 39.62
increments 1 to 8 ≈ 32k 41.61 35.09 38.07
increments 1 to 9 ≈ 36k 39.99 41.23 40.60

that, as the amount of training increased, Recall increased
quickly and then decreased, and Precision and f-measure
increased. This means that the gain in Precision was more
substantial than the decrease in Recall. Also, there were
some fluctuations results, particularly in terms of Recall
for some increments, which also impacted the Fmeasure.

These results show that having more training data led
to higher effectiveness for OneSpace in terms of Preci-
sion and Fmeasure. However, as a counterbalance, when
increasing the training data, Recall also increases quickly,
but then it also quickly peaks and starts slowly decreas-
ing. While such decrease gets counterbalanced by a larger
increase in benefit, this may not always be what the final
user wants — they may prefer Recall to Precision. The
results of this experiment reveal this trade-off.

12. RQ8: How effective is OneSpace for other pro-
gramming language pairs?

In RQ1, we evaluated our cross-language clone detec-
tion approach using two programming languages: Java
and Python. In this research question (RQ8), we study
whether our findings generalize to other programming lan-
guages, by evaluating two additional programming lan-
guages: C and C++. Previous work in the field only ana-
lyzed up to three programming languages (Java, Python,
and C#) [92, 95]. As in RQ1, we again compare the re-
sults of OneSpace with the state-of-the-art techniques
SupLearn [95] and CLCDSA [92], using the Precision,
Recall, and Fmeasure metrics.

12.1. Evaluation Dataset

For this experiment, we use a different dataset than
in RQ1. We use the CodeChef competitive programming
website dataset, available at the Kaggle website [59]. In-
stead of building our own dataset, we decided to use the in-
dependent, publicly-available CodeChef dataset (as when
using AtCoder in RQ1). Also as in RQ1, we did not in-
vestigate the characteristics of the dataset, and thus it did
not influence the design of our technique.

CodeChef contains program specifications with imple-
mentations for them in multiple languages. We only con-
sidered implementations that the dataset pre-labeled as
“accepted”, since it also contains implementations that
were “rejected”, e.g., for not passing the test suite. We
focused this evaluation in the language pairs that had
the highest number of implementations available: Java-
C++ and Java-C. We considered all the specifications and
their implementations that our evaluated techniques could
successfully parse: 210 specifications for Java and C++,
and 150 specifications for Java and C. In total, this in-
cluded 31,126 implementations in Java, 78,547 in C++,
and 40,514 in C.

As ground truth, we considered as clones those imple-
mentations that fulfilled the same specification (as we did
for the AtCoder dataset in previous research questions).

In sum, we used the following two data sets for RQ8:

1. CodeChef-CPP: This is a Java-C++ data set con-
taining the 210 specifications of CodeChef that con-
tain both Java and C++ implementations that parsed
successfully. To be consistent with our previous ex-
periments in RQ1, we randomly divided the 210 spec-
ifications into 7 folds of 30 specifications each. The
total number of implementations in CodeChef-CPP is
94,237 (15,690 in Java and 78,547 in C++).

2. CodeChef-C: This is a Java-C data set containing
the 150 specifications of CodeChef that contain both
Java and C implementations that parsed successfully.
We randomly divided them into 5 folds of 30 specifi-
cations each, to maintain the same number of spec-
ifications per fold as above and in RQ1. The total
number of implementations in CodeChef-C is 55,950
(15,436 in Java and 40,514 in C).

12.2. Training and Testing Process
We used the same process described for RQ1 in Sec-

tion 5.2 to build our training and testing sets. We used
cross-validation over the 7 randomly-divided folds of spec-
ifications of Java-C++ implementations. We also used
cross-validation over the 5 randomly-divided folds of spec-
ifications of Java-C implementations. Each fold contained
30 specifications.

12.2.1. Training Process
For each dataset (CodeChef-CPP and CodeChef-C), we

separately and randomly sampled positive and negative
implementation pairs for training, following the method
that we used for RQ1 (see Section 5.2.1). As in RQ1,
we sampled 40,000 implementation pairs for each dataset,
covering all their specifications, with the same positive
to negative (i.e., clone to non-clone) ratio of 1:2. For
CodeChef-CPP (Java-C++), we sampled 13,864 positive
implementation pairs and 26,136 negative implementation
pairs. For CodeChef-C (Java-C), we sampled 13,664 posi-
tive implementation pairs and 26,336 negative implemen-
tation pairs.
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For each testing fold, we trained our studied techniques
with our sampled positive and negative pairs for which
both their implementations addressed specifications in the
remaining folds. This resulted in a median of 32,463 train-
ing pairs per testing fold in CodeChef-CPP, and median
32027 training pairs per testing fold in CodeChef-C.

12.2.2. Testing Process
Also to stay consistent with the experiment design of

RQ1 (see Section 5.2.2), we randomly sampled 1,000 im-
plementations from each testing fold, covering the 30 spec-
ifications of that fold.

After sampling, for CodeChef-CPP (Java-C++), the
median number of Java and C++ implementations per
fold was 475 and 525 respectively, resulting in a median
of 249,375 Java-C++ implementation pairs evaluated per
fold. The closer Java implementations to 500, the larger
the number of pairs. So, we have the same order for Java
implementations as the test pairs. Similarly, after sam-
pling, for CodeChef-C (Java-C), the median number of
Java and C implementations per fold was 451 and 549
respectively, resulting in a median of 247,599 Java-C im-
plementation pairs evaluated per fold.

Finally, also as with RQ1, we evaluated our studied
techniques over each possible implementation pair (Java-
C++ for CodeChef-CPP, or Java-C for CodeChef-C) from
these sampled implementations. In total for all folds for
CodeChef-CPP, we evaluated 1,734,028 Java-C++ imple-
mentation pairs, belonging to 210 specifications, 146,035 of
which were clones (≈ 1:11 ratio). Similarly, for CodeChef-
C, we evaluated a total of 1,237,941 Java-C implementa-
tion pairs, belonging to 150 specifications, 106,408 of which
were clones (≈ 1:11 ratio).

12.3. Studied Techniques

We adapted the implementation of our studied tech-
niques (OneSpace, SupLearn [95], and CLCDSA [92])
to support the C and C++ languages.

SupLearn [95], and CLCDSA [92] require parsing im-
plementations to obtain their abstract syntax tree (AST).
The original version of SupLearn and CLCDSA can al-
ready parse Java and Python. We adapted them to gen-
erate ASTs for C and C++ code using the “pycparser”
Python library. 3 For CLCDSA, we also adapted it to
extract Cyclomatic Complexity from C and C++ using
the “lizard” Python library. 4. For OneSpace, we also
downloaded Microsoft’s documentation for C++ [87] and
C [88] from Microsoft website since OneSpace is trained
with both code and API documentation data, but the re-
maining implementation details remained unchanged.

3https://pypi.org/project/pycparser/.
4https://pypi.org/project/lizard/.

12.4. Evaluation Metrics
As in RQ1, to calculate the Java-CPP results, for each of

the studied techniques, we constructed a confusion matrix
with the prediction outcome of all the tested implemen-
tation pairs for all the Java-CPP folds. We then applied
Recall, Precision, and Fmeasure on these matrices for each
studied technique. We repeated the same process to cal-
culate the Java-C results.

12.5. Results
We report the results of both experiments in Table 7,

which also includes our previously obtained results for
Java-Python in RQ1.
In summary, our evaluation of OneSpace on Java-C++

and Java-C shows that OneSpace was effective in detect-
ing clones beyond the Java-Python language pair. OneS-
pace provided a higher f-measure than both state-of-the-
art techniques (SupLearn and CLCDSA), for all our
studied programming language pairs.
Next, we discuss how OneSpace provided different re-

sults for different programming language pairs.
In terms of Recall, OneSpace provided high Recall

( 71–76%) for Java-C and Java-C++, and it provided lim-
ited Recall ( 45–50%) for Java-Python. A possible reason
for this is that C and C++ provided more similar tokens
to Java than Python did, i.e., the analyzed Java imple-
mentations may have used more similar tokens to C and
C++, and may have use them surrounded by other to-
kens also in more similar ways. Python has more tokens
that can serve to code the same specification (e.g., in more
or less “Pythonic” ways). That may have made it harder
for OneSpace to identify clones that used different to-
kens than Java, surrounded by other tokens that are also
different.
For Precision, OneSpace provided higher Precision for

Java-Python in AtCoder-b (37%) than it did for the re-
maining programming language pairs ( 17–21%). It’s pos-
sible that, for simpler specifications (as in AtCoder-b), if
OneSpace identified that two implementations used simi-
lar tokens surrounded by similar other ones, they may have
been more likely to be in fact clones (i.e., there may be
less room to implement non-clones that use similar tokens
in similar contexts). However, for more complex specifi-
cations (as in AtCoder-r), and when the token vocabulary
of a programming language is less diverse (as in C and
C++), if OneSpace identified that two implementations
used similar tokens surrounded by similar other ones, it
does not necessarily mean that they are clones (i.e., it may
have been easier to write non-clones using similar tokens
in similar contexts, because there were not many tokens
to choose from, to begin with).

For f-measure, OneSpace provided different scores in
different cases, which we believe can be explained by the
same factors. OneSpace provided its highest f-measure
for Java-Python in AtCoder-b: 41%. It may have been
hard for it to flag clones (since it may not have caught
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Table 7: (RQ8) Effectiveness of the studied techniques for various language pairs in terms of Recall, Precision and Fmeasure metrics. The
Java-Python columns are copied from tables Table 1 and Table 8 for reference.

Approach Java-C++ CodeChef-CPP Java-C CodeChef-C Java-Python AtCoder-b Java-Python AtCoder-r
Rec Pre fmeasure Rec Pre fmeasure Rec Pre fmeasure Rec Pre fmeasure

OneSpace 71.75 21.37 32.94 76.08 17.18 28.04 45.07 37.63 41.02 50.11 20.17 28.76
SupLearn 42.24 13.38 20.33 57.08 11.93 19.73 36.55 17.87 24.01 37.74 10.72 16.69
CLCDSA 45.05 14.99 22.49 89.03 11.80 20.84 71.11 05.88 10.86 67.31 07.23 13.05

clones implemented in Python with more diverse tokens),
but when it did flag clones, it was often right (since speci-
fications may have been simpler, and thus would have had
less room for diverse implementations).

The next highest f-measure went to Java-C++: 33%. It
may have been relatively easy for OneSpace to flag clones
(since they would be implemented with similar tokens
in similar contexts), but it may also have often wrongly
flagged implementations as clones (developers may have
implemented more different things with similar tokens,
since there were fewer tokens available).

Finally, both Java-Python in AtCoder-r and Java-C
obtained the lowest f-measure: 28%. Java-Python in
AtCoder-r may have obtained lower Precision than in
AtCoder-b because more complex specifications now had
more room for implementing non-clones with similar to-
kens in similar contexts. Java-C may have obtained even
lower Precision than Java-C++ because C has even less
diverse tokens that C++.

13. Studying cross-language clone-detection as a
recommendation task.

In this section, we study cross-language clone-detection
as a recommendation task rather than a classification task,
following the advice of past work [100, 121]. Studying
cross-language clone-detection as a recommendation task
has two major advantages.

First, it gives us more information about the effective-
ness of each technique, since we can measure both the
correctness and rank of their answers. The new rank in-
formation tells us how confident each technique is in its
answers.

Second, we believe that modeling clone-detection an-
swers as recommendations provides a more faithful rep-
resentation of the experience of practitioners using these
techniques, i.e., they would assess a ranked list of recom-
mended clones.

A common scenario in which cross-language clone rank-
ing is useful is when a software project needs to be mi-
grated to a different programming language to take ad-
vantage of its better features. For example, Microsoft mi-
grating to Rust to take advantage of Rust’s secure memory
management capabilities [48, 74]. In such cases, develop-
ers could benefit from finding and reusing clones for their
implemented code in the target language. In such a case,
it would be better to recommend the candidates with the

highest probability of being clones ahead of the retrieved
list.

13.1. Evaluation method.
We envision users of these techniques in the following

context: given an implementation in language A as a
query, they would want to find all its clones within a given
collection of implementations in other languages. A cross-
language clone-detection technique would produce an or-
dered ranking of all the implementations in the other lan-
guages, in decreasing order of likelihood of them being
clones of the given implementation in language A. In our
evaluation, we assign a single effectiveness score for each
recommendation — i.e., each ranked list — obtained for
a queried implementation. We assign higher scores to rec-
ommendations that rank the correct answers higher — by
applying the learning-to-rank NDCG@k metric [49].
We repeat the evaluation of RQ1, but this time using

the following metrics in this analysis: NDCG@k, Preci-
sion@k, and Recall@k. We measured these metrics for the
recommendation that each technique produced for each of
the queried Java implementations of our experiments .
NDCG@k [49] is a popular metric for scoring ranked

recommendations. It accounts for both the correctness
and rank of each answer in the recommendation.

In addition to NDCG@k, we also measured Precision@k
and Recall@k for the techniques’ recommendations. For all
metrics in this experiment, k represents the top k positions
that are considered inside a recommendation. We studied
many values of k for all metrics: 1,5,10,20,40,60,80,100.
These metrics produce scores in the range 0–100 and
higher scores are better.

NDCG@k: We used Burges et al.’s [20] formula. NDCG
is calculated as the Discounted Cumulative Gain
(DCG) score for a recommendation, divided by the
DCG score of an ideal recommendation — a recom-
mendation in which the correct answers are contained
in its top positions. In the DCG formula (Equa-
tion (5)), i represents the top ith position inside a rec-
ommendation, and reli represents the actual, ground-
truth relevance of the item recommended in position
i. We assigned relevance 1 to recommended imple-
mentations that were clones and relevance 0 to those
that were not.

NDCG@k = DCG@k(recommendation)
DCG@k(ideal recommendation) · 100 (4)
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DCG@k =

k∑
i=1

2reli − 1

log2(i+ 1)
· 100 (5)

Precision@k: measures, within the top k items in a rec-
ommendation, the proportion of them that are true
clones.

Precision@k = |{relevant items}∩{retrieved items}@k|
|{retrieved items}@k| · 100 (6)

Recall@k: measures, within the top k items in a recom-
mendation, the proportion of all true clones that are
in the recommendation.

Recall@k = |{relevant items}∩{retrieved items}@k|
|{relevant items}| · 100 (7)

13.2. Results in ranking metrics
We report RQ1 results using ranking metrics in Table 8

and Figure 4. ‘Table 8 shows the median values obtained
by our studied techniques for all queries (including all
folds), for all metrics and values of k. Figure 4 highlights
the distribution of scores obtained by all techniques for
k=10 (i.e., for NDCG@10, Precision@10, and Recall@10).
To compare the distribution of scores obtained by OneS-
pace and every other technique, we tested for statistical
significance with a Wilcoxon one-tailed paired test (since
the distributions of data were not normal, and the scores
were paired).

Our results show that OneSpace provided much higher
effectiveness than the state-of-the-art techniques in rank-
ing context, for all our studied metrics and thresholds,
with statistical significance (p < 0.05) for all of them.
Regarding NDCG@k scores, we highlight that OneS-

pace obtained a median NDCG@1 value of 100. This
means that, in the median case, it recommended a clone in
its top 1 result. As we consider more results in its recom-
mendation, OneSpace lowers its NDCG@k score, since
it also recommends some implementations that are not
clones. Still, OneSpace’s NDCG scores were very high,
even for long recommendation lists. For example, its me-
dian NDCG@10 is 70.15, e.g., it recommended clones in
positions 2,3,4,5,7,8 and 9 within its top 10 recommenda-
tions, in the median case.

For long recommendations, e.g., NDCG@100, OneS-
pace still provided highly effective results: it recom-
mended clones in positions [3, 6, 7, 8, 9, 10, 12, 13, 14,
15, 17, 19, 20, 21, 22, 24, 29, 32, 37, 47, 51, 60, 76, 86, 97]
within its top 100 recommendations, in the median case
(Figure 5, bottom row).

In contrast, the state of the art techniques generally
recommended much fewer clones, and in much lower posi-
tions in their recommendation lists. SupLearn obtained
median 0 for NDCG@1, 9.1 for NDCG@10, and 38.17
for NDCG@100. This means that even when we con-
sider a large number of recommended implementations

(NDCG@100), SupLearn only recommended clones in
positions [11, 22, 25, 26, 36, 38, 41, 45, 50, 59, 66,
75, 85, 95 , 98] in the median case (Figure 5, middle
row). CLCDSA obtained even lower median NDCG@k
scores: 0 for NDCG@1, 0 for NDCG@10, and 14.88 for
NDCG@100. This means that even when we consid-
ered a large number of recommended implementations
(NDCG@100), CLCDSA only recommended clones in po-
sitions 11, 30 , 56, 81 and 82 in the median case (Figure
5, top row).

For Precision@k, we observed a similar effect to
NDCG@k. OneSpace obtained median 100% Preci-
sion@1 because it recommended a clone in its top 1 result
in the median case. Then, as k increases, Precision@k
decreases, due to the recommendation containing some
non-clones. However, the drop in Precision@k is more
acute than the drop in NDCG@k. This is because Preci-
sion@k does not account for the position of clones within
the recommendation list —NDCG@k assigns higher scores
to higher positions. These two observations together mean
that OneSpace tends to recommend clones around the
top positions of its recommendation —in the median case,
it recommended 22 clones out of 100 recommendations.
The other studied techniques obtained much lower Pre-

cision@k values. For example, in the median case, Su-
pLearn recommended only 1 clone within its top 10 rec-
ommendations (Precision@10) and 11 clones in its top 100
recommendations (Precision@100). In the median case of
CLCDSA, it performed worse than SupLearn. It rec-
ommended 0 clones within its top 10 recommendations
(Precision@10) and 6 clones in its top 100 recommenda-
tions (Precision@100). In contrast, OneSpace performed
much better. It recommended 6 clones in its top 10 rec-
ommendations (Precision@10) and 22 clones in its top
100 recommendations (Precision@100). Summing up, Su-
pLearn and CLCDSA recommended much fewer clones
and in much lower positions in their recommendation than
OneSpace.
Regarding Recall@k scores, OneSpace also obtained

high scores: 2% for Recall@1, 18% for Recall@10, and
87.5% for Recall@100. These are high scores because they
are close to the highest achievable Recall for each thresh-
old. For our test data, the median number of true clones
per query in the ground truth is 32. Thus, in the median
case, the highest achievable Recall for thresholds 1, 10,
and 100 were 3%, 31%, and 100%, respectively.

The other studied techniques obtained much lower val-
ues of Recall@k. For example, in the median case, for
Recall@10, SupLearn achieved 4% and CLCDSA 0%
(while OneSpace had 18% Recall@10). OneSpace out-
performed SupLearn and CLCDSA also for larger rec-
ommendations, e.g., for Recall@100, SupLearn achieved
68% and CLCDSA 23% (while OneSpace had 87 % Re-
call@10).

Our observation for all metrics show that, generally,
OneSpace recommended more clones and in higher po-
sitions than the state of the art techniques. This is also
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Table 8: Median Effectiveness. OneSpace provided higher effectiveness than the state-of-the-art for all ranking metrics, with statistical
significance.

OneSpace SupLearn CLCDSA
k Precision@k Recall@k NDCG@k Precision@k Recall@k NDCG@k Precision@k Recall@k NDCG@k
1 100 02.00 100 00.00 00.00 00.00 00.00 00.00 00.00
5 60.00 09.43 72.27 00.00 00.00 00.00 00.00 00.00 00.00
10 60.00 18.18 70.15 10.00 04.35 09.10 00.00 00.00 00.00
20 50.00 34.04 65.89 10.00 11.43 14.11 00.00 00.00 00.00
40 35.00 59.57 64.78 10.00 27.27 20.54 05.00 04.76 04.10
60 30.00 73.58 67.80 11.67 43.18 27.96 03.33 09.30 07.65
80 25.00 81.97 71.80 11.25 56.67 34.07 05.00 15.38 10.95
100 22.00 87.50 74.70 11.00 68.18 38.17 06.00 23.08 14.88
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Figure 4: OneSpace provided higher scores than the state-of-the-art for all metrics.
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OneSpace
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CLCDSA
Ranks of True Clones as retrieved by the median ndcg@100 query

Figure 5: The positions of the true clones, as recommended for the
median query, in terms of NDCG@100, for the three studied ap-
proaches, OneSpace, SupLearn, and CLCDSA. Lower values are
better. We notice that OneSpace recommended true clones in ear-
lier positions of the ranked list, whereas SupLearn and CLCDSA
recommended lower positions for true clones.

reflected in Figure 4: the most common NDCG@10 and
Precision@10 scores obtained by OneSpace’s recommen-
dations were among the highest of the scale, while Su-
pLearn’s and CLCDSA’s concentrated among the lowest
values.

This conclusion can also be observed in Figure 6 , which
plots the number of times that each technique recommends
a true clone at position k where k is in range [0-100].
We can see in the figure that OneSpace recommend true
clones earlier in its recommendation list, when compared
to the other two state of the art techniques.

14. Discussion

14.1. When did OneSpace Succeed and When did It Not?
We found in RQ1 (Section 5.5) that OneSpace im-

proved over the state of the art in terms of the number

1 20 40 60 80 1000

500

1000

1500

2000

2500
Number of true clones at each task

OneSpacew
SupLearn
CLCDSA

Figure 6: The number of times a true clone appeared at rank k for k
in [0-100] for the three studied approaches: OneSpace, SupLearn,
and CLCDSA. Lower ranks are better. The figure shows that OneS-
pace assigned lower ranks in its recommendation list than SupLearn
and CLCDSA. That means it is better for ranking candidate clones
than the state of the art techniques.

of detected true clones that it recommends and in terms
of their ranking (Section 13). We also found in RQ2 (Sec-
tion 6.2) that OneSpace achieved its highest effectiveness
when it used a single shared embedding space for the two
languages and a Siamese Neural Network. This means
that OneSpace recommends in high rankings clone pairs
that have one or two of these properties: (a) the clone
pair has semantically related tokens that are placed close
to each other in the shared space, and/or (b) it contains
such similar tokens in a similar order.
As an example, Figure 7 shows two clone fragments in

Java and Python. The implemented functionality checks
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A = input()
B=A
B=B.replace("ch",'')
B=B.replace("o",'')
B=B.replace("k",'')
B=B.replace("u",'')
if len(B)!=0:
 print('NO')
elif A[-2:-1]=='ch':
 print('YES')
elif A[-1]=='o':
 print('YES')
elif A[-1]=='k':
 print('YES')
elif A[-1]=='u':
 print('YES')
else: print('NO')

import java.util.Scanner;
public Class Main{
 public static void main(string[] args){
  Scanner scanner = new Scanner(System.in);
  String s = scanner.next();
  if(s.length()>=0 && s.matches("(ch|o|k|u)*")){
   system.out.println("YES");
  } else{
   system.out.println("NO") 
  }
 }
}

Figure 7: A true positive example for OneSpace

A, B, C = map(int, input().split())
if (A==5 and B==5 and C==7) or (A==5 and B==7 and C==5) or (A==7 and B==5 and
C==5):
 print("YES")
else:
 print("NO")

Figure 8: A CLCDSA’s false positive example for the code in Figure
7

whether an input string is composed of certain substrings.
For the Java query on the left part of the figure, OneS-
pace recommended 10 true clones on the top 10 positions
of its recommendation list. Figure 7 shows the true Python
clone on the top of the recommendation list. These the two
implementations have the two properties we mentioned be-
fore. First, the two programs share many semantically re-
lated tokens such as input/output methods, string process-
ing tokens, YES/NO literal strings, and constant character
variables. Second, the order of the corresponding tokens in
the two implementations is similar, even if not perfect. We
believe that these two properties contributed for OneS-
pace to assign a higher probability of being clones to the
clone pair in Figure 7.

In contrast, SupLearn recommended only 3 true clones
within the top 10 positions of its recommendation for the
same Java query (in positions 1, 7 and 9), which did not
include the Python implementation in figure 7-right. Su-
pLearn uses the AST of the considered implementations
as features for its predictions, and the AST of the two im-
plementations in Figure 7 are not very similar. This may
have impacted SupLearn for recommending it in a lower
position in its recommendation, i.e., not within its top 10
positions.

CLCDSA failed to retrieve any correct clones in the top
10. CLCDSA instead recommended the code in Figure 8
on the top of its recommendation list, which solves a to-
tally different problem with different input variable types.

CLCDSA uses statistical features for its prediction, and
the code in Figure 8 is more similar to the queried one
(left side of Figure 7) in terms of statistical features like
length and Cyclomatic Complexity than the true clone in
the right side of Figure 7 is.

We also investigated when OneSpace did not succeed
to detect true clones at the top 10 positions in its recom-
mendation list. As an example, consider the false negative
clone pair in Figure 9. This represents Java and Python
implementations for finding the transitive closure of a set,
and printing the number of edges at each vertex. The
Java and Python implementations tackle the problem us-
ing different data structures. While the Java implementa-
tion uses a 2D array as an adjacency matrix, the Python
implementation uses a dictionary as an adjacency list. Al-
though the two programs have commonalities in terms of
tokens and their order, OneSpace ranked multiple other
(non-clone) implementations higher than this true clone.
Most of those higher-ranked implementations had nested
loops that use single character identifiers such as [i,n,m,j,k]
with conditional statements inside the nested loop, which
may have made OneSpace rank them higher. We plan to
further explore this in the future to try to reduce the num-
ber of highly-ranked implementations that are not clones
in OneSpace’s recommendations, e.g., by adding features
to it based on dynamic analysis.

14.2. Shared Embedding Space vs. Separate Embedding
Spaces

We observed in our results that the component of OneS-
pace that had the most impact on its effectiveness was
the usage of a shared embedding space in its algorithm.
The variant of OneSpace that provided the lowest effec-
tiveness when compared to it was the one that used two
separate embedding spaces. Similarly, the existing tech-
nique SupLearn, which also uses two separate embedding
spaces, also provided low effectiveness when compared to
OneSpace.

Our original intuition was that using a shared embed-
ding space would provide better alignment of semantically
related words in different programming languages than if
we trained separate embedding spaces for each program-
ming language and later aligned them. Such close position-
ing of semantically related concepts would aid the Neural
Network to identify clones in different programming lan-
guages.
To better investigate our intuition, we performed an ad-

ditional deep study of the embedding spaces that would
be produced for one of the clones that OneSpace ranked
highly, but OneSpace-AlignedSpaces and SupLearn
ranked in lower positions. We again studied the clone pair
in Figure 7 (as we did in Section 14.1). We wanted to
know if training the same embedding space with this spe-
cific clone pair would position semantically related words
closer in the space than if we trained two separate spaces
and aligned them later.
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import collections
 
n, m = map(int, input().split())
 
r = collections.defaultdict(list)
 
for _ in range(m):
  a, b = map(int, input().split())
  r[a].append(b)
  r[b].append(a)
 
for i in range(1, n + 1):
  s = set()
  for f in r[i]:
    for ff in r[f]:
      if ff not in r[i] and ff != i:
        s.add(ff)
  print(len(s))
 

public static void main(String[] args) {          
       Scanner sc = new Scanner(System.in); 
       int N = sc.nextInt(); 
       int M = sc.nextInt(); 
       int friends[][] = new int[N][N]; 
       for(int i = 0;i < N;i++){ 
          for(int j = 0;j < N;j++){ 
              if(i == j) 
                continue; 
              friends[i][j] = 10000;             
          }            
       }  
       for(int i = 0;i < M;i++){ 
           int a = sc.nextInt() - 1; 
           int b = sc.nextInt() - 1; 
           friends[a][b] = 1; 
           friends[b][a] = 1; 
       } 
       for(int k = 1;k <= N;k++){ 
           for(int i = 0;i < N;i++){ 
              for(int j = 0;j < N;j++){ 
                  friends[i][j] = Math.min(friends[i][j],friends[i][k-1] + friends[k-1][j]); 
                 
              }                
           }                        
       }             
       for(int i = 0;i < N;i++){ 
           int ans = 0; 
           for(int j = 0;j < N;j++){ 
               if(i == j) 
                   continue;   
               if(friends[i][j] == 2) 
                   ans++;                
           }          
           System.out.println(ans);                        
       }             
   }        

Figure 9: A false negative example for OneSpace

A, B, C = map(int, input().split())
if (A==5 and B==5 and C==7) or (A==5 and B==7 and C==5) or (A==7 and B==5 and
C==5):
 print("YES")
else:
 print("NO")

Figure 10: A CLCDSA’s false positive example for the code in Figure
7

We projected the tokens of the two programs to a shared
embedding space and visualized the projection on a 2D
space using the t-SNE algorithm [79] in Figure 11. In this
figure, we see that related concepts (like the string pro-
cessing methods “replace” and “matches”) are very close
to each other. Similarly, words like “length”, “len” and
“count” were also together and also close to the string
methods cluster, since they also can be executed over
strings. We manually marked these exemplified clusters
on the t-SNE plot with different shapes, for illustration
purposes.

Then, we also trained two separate spaces, for the Java
and Python implementations, and aligned them using a
widely recognized embedding alignment tool (used in e.g.,

Figure 11: t-SNE visualization of the projection of the true positive
example in Figure 7 on OneSpace’s shared embedding

Figure 12: t-SNE visualization of the projection of the true positive
example in Figure 7 on an aligned embedding space
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Figure 13: A true positive example for OneSpace that OneSpace-WMD failed

    def solve():
        li = [int(i) for i in input().split()]
        print("YES" if sum(li) == 17 and len(set(li)) == 2 else "NO")

Figure 14: A OneSpace-WMD’s false positive example for the code
in Figure 13-left

[14, 102, 114, 125]): Crosslingual-CCA [37]. We show the
resulting T-SNE plot of the alignment in Figure 12. In it,
we see that the string processing functions are now scat-
tered, and the “count” and “len” functions are separated
into two clusters. These observations support our intu-
ition that training a single space achieves closer position-
ing of semantically related concepts in the space. While
the alignment algorithm that we used in this investigation
is not the same one used by OneSpace-AlignedSpaces or
SupLearn, our experiment shows that aligning separate
spaces is a challenging problem (which likely impacted the
ranking that those two algorithms assigned to our studied
clone pair).

14.3. Siamese Neural Network vs. Word Mover Distance?

To better understand why OneSpace recommended
clones at higher positions than the OneSpace-WMD
variant, we manually inspected multiple cases for which
OneSpace ranked clones at higher positions than OneS-
pace-WMD did. We present one example next.
The Java listing in figure 13 (left) receives an array as

input and produces the sum of elements whose indices cor-
respond to 1 in a binary represented integer. OneSpace-
WMD did not recommend any clones within its top-30
recommendations for this queried Java implementation.
It instead recommended many implementations that were
not clones, but shared many similar tokens (although not
necessarily in a similar order). For example, OneSpace-
WMD retrieved on top 5 the implementation at figure 14,
which has multiple tokens that correspond to tokens in the
with the query [Set, Len, Sum, solve, int, i].

In contrast, OneSpace recommended a true clone at
the top rank of its recommendation (Figure 13 (right)).
OneSpace was able to identify both the similarity of se-
mantically similar tokens and the order of their usage, and
thus assigned a high rank to this implementation.

15. Threats to Validity

15.1. Construct Validity
A threat to construct validity concerns whether we are

basing our evaluation on appropriate data. To mitigate
this threat, we used the AtCoder dataset, which is the
same one that was used to evaluate SupLearn. AtCoder
contains a large and diverse set of implementations for a di-
verse set of specifications, making our evaluation included
diverse clone and non-clone pairs.

15.2. External Validity
A threat to external validity is whether the results of

this study will generalize to other datasets. To miti-
gate this threat, we evaluated techniques separately for
two kinds of problem specifications: beginner and regu-
lar (RQ3), and for a total of 4 programming languages:
Java, Python, C, and C++ (RQ8). This provides evi-
dence about how the accuracy of our proposed technique
and existing techniques may vary as they face more com-
plex sets of clones and non-clones, and different program-
ming languages. Additionally, we are making all our code,
data, fold splits information, and full experiment out-
put available for researchers to replicate our experiments,
re-execute under different experimental setup, compare
against or apply to different data sets.
An additional threat to validity relates to whether

OneSpace could detect clones across programming lan-
guages that are highly dissimilar, e.g., each clone using
a different paradigm, such as procedural (e.g., Modula-
2) or functional (e.g., Scheme) vs. object oriented (e.g.,
Java). Our evaluation addresses this question to some
extent. We observed that OneSpace provided high Re-
call for Java and C and C++. This may be because the
two programming languages involved tokens that are more
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similar and that are more often used in similar token con-
texts. In contrast, OneSpace obtained lower Recall for
Java-Python. A possible explanation is that it may be
harder for it to flag clones that use more “Pythonic” im-
plementations with more diverse tokens in more diverse
contexts. This may also explain the opposite trend that
we observed in terms of Precision. However, despite these
differences in results for different programming languages,
OneSpace still achieved higher results than the state of
the art techniques for all of them.

Future research could focus on broadening the set of
programming languages and programming paradigms in
which cross-language clone detection techniques are eval-
uated. Such direction would require non-trivial effort of
building new datasets of code clones across a wide va-
riety of languages and paradigms (via repository mining
or manual translation). To be able to better compare
our new technique (OneSpace) with the state of the art
techniques, we focused on evaluating them using the pro-
gramming languages with which they were originally eval-
uated.

Another threat to external validity involves whether per-
forming our evaluation over implementations taken from
competitive programming websites is representative of the
usage in practice of cross-language clone detection. The
extent to which our findings generalize to other polyglot
industrial software projects will depend on the charac-
teristics of each project, i.e., the problem will be differ-
ently easy or hard for different projects. For example, if
a development team followed strict coding styles, it may
be easier for cross-language clone detection techniques to
identify clones in that software project. Conversely, it
may be harder for techniques to detect clones in software
projects that contain many similar-looking methods, e.g.,
with many similar machine-learning pipelines applied to
different goals.

To be able to evaluate our studied cross-language clone
detection techniques under diverse scenarios, competitive
programming websites provide a unique opportunity, i.e.,
they allow us to gather a large number of diverse cross-
language clones. Each specification was implemented in-
dependently by different programmers, coding in differ-
ent programming languages and styles. We believe that
such a dataset provides a good representation of the prob-
lem space, and therefore captures how cross-language tech-
niques would perform under diverse situations. These code
submissions provide a diverse set of algorithms, coding
styles, data structures, and programming constructs. Fur-
thermore, both of our studied state-of-the-art techniques
were originally evaluated with datasets from competitive
programming websites [92, 95].

Therefore, our evaluated datasets allow us to compare
the effectiveness of our proposed technique OneSpace
with the state-of-the-art techniques for a diverse set of
scenarios.

16. Related Work

16.1. Cross-language Clone Detection
Some past approaches have been proposed to detect

clones across programming languages.
Some of them apply static analysis techniques. For

example, the techniques by Kraft et al. [69] and Al-Omari
et al. [2] identify clones by looking for similarities in the
Common Intermediate Language to which multiple pro-
gramming languages get compiled within Microsoft’s .NET
framework. Later, Vislavski et al. [120] created LICCA,
which uses the SSQSA framework to represent implemen-
tations as enriched Concrete Syntax Trees (eCST) [96].
It then identifies clones using a variant of the longest
common subsequence algorithm (LCS) to find a common
sub-tree between implementations. In contrast with these
techniques, our proposed approach (OneSpace) does not
require clones to be implemented for the .NET framework,
or to have a common sub-tree in their syntax tree.

Other past approaches apply dynamic analysis. For ex-
ample, Fang-Hsiang Su et al. [115] detect clones for JVM-
based languages such as Java and Scala by executing meth-
ods and observing similarities in the outputs of the same
inputs. Then, Mathew et al. [80] proposed a similar ap-
proach to detect clones between Java and Python, also
based on comparing whether the same inputs produce the
same outputs in implementations in different languages.
Later, Mathew et al. [81] improved the effectiveness of
their algorithm by complementing it with static analysis
(measuring tree edit distance and Jaccard token similar-
ity). In contrast to these algorithms, our proposed ap-
proach (OneSpace) provides multiple benefits. First, it
does not require programs to be able to execute within
a time window. Dynamic analysis approaches impose an
execution time limit to be able to obtain and compare mul-
tiple outputs for each program within a reasonable amount
of time. Second, OneSpace does not require any modifi-
cation of the source code under analysis (e.g., to make it
not interactive), pre-processing its dependencies, or con-
figuring its build environment. All these are requirements
in dynamic analysis approaches, to be able to run the code
under analysis.
Other approaches analyze the evolution of the source

code under analysis. Cheng et al. [23][24] proposed
CLCMiner, which assumes that clones spanning differ-
ent languages evolve similarly on a software repository.
CLCMiner mines the project’s source code repository,
looking for similar diffs in the candidate implementations.
In contrast to these approaches, our proposed approach
(OneSpace) does not require clones to have evolved in
similar ways.
Finally, other approaches apply machine learning tech-

niques over some representation of the source code under
analysis. These are SupLearn [95] and CLCDSA [92].
We described them in detail in Sections 5.3.2 and 5.3.3,
and we evaluated them in our experiments. The tech-
niques that apply machine learning do not have any of the
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limitations that are imposed by other approaches based
on static analysis, dynamic analysis, or evolution analysis.
Techniques that apply machine learning do not limit the
programming languages to which they can be applied, the
structure of the code under analysis, its execution time, or
the way in which it evolved. Our experiments in this paper
found that our proposed approach (OneSpace) provides
much higher effectiveness than the other approaches based
on machine learning.

16.2. Single-language Clone Detection
Multiple approaches have been proposed in the past to

automatically detect implementation clones within a sin-
gle programming language. Roy and Cordy [100] classified
clone detection approaches by the way they represent the
source code. Early approaches [58] leverage the raw code
representation of the code and apply string matching algo-
rithms to determine similarity. More recently, CodeXGlue
[78] also uses a raw code representation and applies ma-
chine learning to obtain better results.

CCFinder [61] uses a different representation: it trans-
forms the code text into a coarser-grained token represen-
tation and compares it to detect clones. SourcererCC [106]
[77] also compares a coarser-grained token representation,
and it uses optimized indexing to achieve high scalability.

Graph approaches compare static program representa-
tions, such as the AST and PDG. The most popular tool
in this category is Deckard [50] which transforms the AST
into a feature vector that it uses to measure implemen-
tation similarity. Other graph-representation techniques
[22, 39] detect isomorphic graphs inside other static pro-
gram representations, like the PDG or CFG. White et
al. [124] compares graph representations using embedding
and Recursive Neural Networks.

Finally, a recent family of clone detection approaches
apply dynamic analysis. The basic intuition behind these
approaches is that methods that provide the same output
to the same inputs should be identified as clones [65, 115].

In contrast to all these approaches, our proposed ap-
proach (OneSpace) was designed and evaluated to detect
implementation clones across different programming lan-
guages.

17. Conclusion and Future Work

In this paper, we presented OneSpace, a cross-language
clone detection approach that provides much higher effec-
tiveness than the state of art cross-language clone detec-
tion techniques. We analyzed the impact of the different
components of OneSpace. We found that the component
that contributed the most to its improved effectiveness was
training a single embedding space with all the analyzed
implementations in different languages. In the future, we
plan to apply our design of having a common embedding
space to other multi-programming-language software en-
gineering tasks.

Also, we plan to complement the design of OneS-
pace with additional features that capture more char-
acteristics of clones. For example, we will explore ad-
ditional prediction features related to, e.g., code-change
history [108, 109, 107, 111, 112, 5], testing activity, e.g.,
[64, 40, 63], decision-making metadata, e.g., [86, 4, 3], de-
veloper expertise, e.g., [110, 26], failure prediction e.g.,
[52, 54, 53, 51, 55, 56], vulnerability prediction e.g., [32, 43]
or programming language similarities and differences, e.g.,
[33].

18. Replication

We include a replication package for our paper [7].
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