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1 INTRODUCTION

Continuous integration (CI) is a widely used practice in modern software engineering that encourages developers to
check in, build, and test their code in frequent intervals [29], sometimes as frequently as building and testing for every
code change. However, while CI is widely recognized as a valuable practice, it also incurs an expensive cost — due to
the high computational workloads created by frequently executing software builds [44, 46, 47, 81, 111]. For simplicity
and consistency with previous studies [1, 51], we will use the term build to refer to a full build that includes all stages
of build preparation (e.g., compilation), and testing. We will also use the term execution to refer to the execution of
either builds or tests.

Some research approaches have been proposed to reduce the computational cost of CI, e.g., [1, 2, 44, 51, 67]. The
goal of these techniques is to skip as many as possible of the (build or test) executions that provide lower value for
developers, while still executing as many as possible of those that are more valuable. Many of the existing techniques
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thus aim to skip (build or test) executions that pass, while still executing as many (build or test) executions that fail —
since they provide feedback about an issue that needs to be resolved, e.g., [44, 50, 51, 53, 67].

Build or test selection techniques are evaluated in terms of their provided cost savings, i.e., the ratio of executions
that they choose to skip, and in terms of their safety, i.e., the ratio of failing executions that they choose to not skip. All
build or test selection techniques provide some trade-off between cost savings and safety [53], e.g., if they are more
inclined to choose to skip executions, they will save more cost, but they will also more likely skip failing executions —
and delay their observation.

In this paper, we present a novel approach for reducing the computational cost of CI: HybridCISave. We designed
HybridCISave to improve on the limitations of existing techniques: to provide higher cost savings and higher safety.

To provide high cost savings, we designed HybridCISave to skip builds both fully and partially. Existing cost-saving
techniques for CI selectively skip executions at either the build [1, 2, 51] or test [39, 44, 67, 101] granularities. Build
selection techniques skip full builds — skipping both the build preparation steps and all the tests for the project. Test
selection techniques skip partial builds — executing the build preparation steps, but skipping some of the tests. To the
extent of our knowledge, HybridCISave is the first technique to combine both approaches.

To provide high safety, HybridCISave contains other design decisions within its components HybridBuildSkip and
HybridTestSkip, which we describe next.

HybridCISave is a hybrid technique that applies two separate components: HybridBuildSkip to predict which builds
to skip fully, and HybridTestSkip to predict which builds to skip partially. We depict HybridCISave in Figure 1. First,
for a given software build, HybridCISave applies HybridBuildSkip to predict if the build will pass. If so, HybridCISave
skips the build fully (i.e., all its preparation steps and test executions), saving its cost. Second, if HybridBuildSkip
instead predicted the build to fail (and thus should not be skipped fully), then HybridCISave will still try to save partial
cost in that build. In that case, HybridCISave applies HybridTestSkip to each individual test, and predicts whether it
will pass (and skip its execution, saving its cost) or it will fail (and execute it).

We designed HybridBuildSkip and HybridTestSkip with the same goals as HybridCISave: to provide high cost
savings and high safety.

To provide high cost savings, we designed HybridBuildSkip also as a hybrid technique. HybridBuildSkip applies
a collection of build and test selection techniques and then uses their individual outcomes as features for a machine
learning predictor (random forest). Our intuition behind this design is that HybridBuildSkip’s predictor could learn
to counterbalance the incorrect predictions of some techniques with the correct predictions of others, to make more
correct predictions. HybridTestSkip also helps provide high cost savings by skipping partial builds in addition to the
full builds skipped by HybridBuildSkip.

To provide high safety, HybridBuildSkip takes two measures. First, it applies build selection techniques, which
were originally designed to provide high safety, by aiming to skip builds that developers would want to skip (CI-Skip
Commits [1, 2, 88]) or by skipping builds that they predict will pass with high certainty [51]. Second, HybridBuildSkip
applies test selection techniques to predict build outcomes in a highly safe way: it models that a test selection technique
predicts a build to pass if it predicts all its individual tests to pass. HybridTestSkip also contributes to providing high
safety by only skipping a test when multiple test selection techniques agree that the test should be skipped.

The novelty of our proposed approach (HybridCISave) lies in the many specific decisions that went into its design
(described above). There are many other ways in which multiple techniques could have been combined into a hybrid one.
We designed our hybrid technique in a specific, novel way, in which we made specific decisions following a rationale
that aimed to achieve desirable properties: high cost savings and high safety.
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We designed our evaluation of HybridCISave to study the extent to which our specific design decisions in Hybrid-
CISave actually achieved the desirable properties that we aimed to achieve. Thus, our evaluation contributes empirical
evidence of the benefits provided by our specific design decisions in HybridCISave.

First, we studied whether HybridCISave provides higher cost savings and safety than existing techniques (RQ1). We
compared HybridCISave with all the other build selection techniques. In this part of our evaluation, we found that
HybridCISave provided higher cost savings than all previous build selection techniques, at the same (or higher) levels
of safety. Additionally, HybridCISave provided higher safety than the safest of our studied techniques (Abdalkareem20).
In its safest configuration, HybridCISave could save 14% of build duration (i.e., time spent executing builds, including
all their steps, e.g., preparing the build environment, compiling, and running tests) while still executing 100% of failing
builds (in the median case).

Second, we studied whether the specific design in which we combined techniques in HybridCISave provided higher
cost savings and safety than alternative designs (RQ2, RQ3, RQ4, and RQ5). For that, we performed an ablation study
in which we separately substituted each one of our design decisions for an alternative one and observed whether
performance worsened.

We found in RQ2 that our decision of adding a component to skip partial builds in addition to full builds (HybridTestSkip
andHybridBuildSkip) provided higher cost savings than not having the component to skip partial builds (HybridBuildSkip
only). We also found in RQ3 that our decision of combining test selection techniques with build selection techniques to
selectively skip builds (within HybridBuildSkip) provided higher cost savings than not using them. Then, we found in
RQ4 that our decision to use a random forest classifier to combine techniques in HybridBuildSkip (as opposed to other
machine learning models or to a simple voting scheme) provided higher prediction effectiveness. In RQ5, we found that
our design of HybridTestSkip to combine test selection techniques with high safety did provide higher safety than
other test selection techniques.

Third, we evaluated the relative importance of HybridBuildSkip’s and HybridTestSkip’s features (RQ6, RQ7). We
found that the most important feature for skipping builds was Subsequent Failure, and that Gligoric15 had the strongest
importance when skipping tests. This is because a large portion of failing builds happened after another build failure
(40%), and more than 90% of builds with no test to cover the changes (which is the criterion used by Gligoric15 to skip
tests) were passing builds. We also observed that the least important feature to predict the outcome of test executions
was Herzig15, since it focused on skipping builds with long execution times, and our dataset contained few of these.

Finally, we studied the risk of HybridCISave’s execution time taking longer than the process that it aims to skip:
executing the build themselves (RQ8, RQ9). HybridCISave requires to obtain and combine multiple predictions, which
could potentially take long and thus defeat its purpose. We found that the execution time spent to execute HybridCISave
was negligible compared to the execution time that it saved. Executing HybridCISave took a median of 0.0116 seconds,
while the median build duration in our studied dataset was 441.5 seconds. Thus, HybridCISave’s execution time only
reduced its savings by up to 0.016pp. This paper provides the following contributions:

• The first hybrid approach to saving computational cost in CI (HybridCISave), that skips full and partial builds.
• Empirical evidence that the novel design in HybridCISave provides high cost savings and high safety.
• Empirical evidence that the specific design decisions that went into HybridCISave individually contributed to it
providing high cost savings and high safety.

• Empirical evidence that the complex, hybrid design of HybridCISave (combining multiple other approaches)
requires only negligible execution time when compared to the time that it saves.

3



Woodstock ’18, June 03–05, 2018, Woodstock, NY Xianhao Jin and Francisco Servant

2 RELATEDWORK

2.1 Empirical Studies of CI and its Cost

Multiple past works focused on understanding the practice of CI, in dimensions related to both practitioners, e.g., [47]
and software repositories [107].

Stahl et al. [103] and Hilton et al. [47] studied the benefits and costs of CI usage, and the trade-offs between them [46].
Elazhary et al. also studied benefits and challenges of Continuous Integration practices [21]. Widder et al. identified the
pain points in using Travis CI [111]. Zampetti et al. identified the problems and solutions of applying CI to a specific
domain: cyber-physical systems [119], and Soares et al. studied the impact of CI on software engineering more generally,
surveying the research literature [102]. Gallaba et al. studied the operational aspects of a specific CI platform (CircleCI),
such as how much time each build stage takes, and how many builds are canceled [32]. Lepannen et al. studied the
costs and benefits of a related practice: continuous delivery [62].

Other studies focused on the barriers [81] and challenges [18] for CI adoption. Felidré et al. [27] studied the adherence
of projects to the original CI rules [29], and Gallaba et al. [34] and Zampetti et al. [121] characterized complementary
collections of bad practices in CI.

Zhao et al. studied the impact of CI in other development practices, like bug-fixing and testing [125]. Vasilescu et al.

studied CI as a tool in social coding [106], and later studied its impact on software quality and productivity [107]. Wang
et al. also studied the impact of CI in product quality, particularly as test automation matures [110].

Our work in this paper aims to reduce the high computational cost of using CI. This high cost was observed in
multiple past studies [44, 46, 47, 81, 111], and it can reach millions of dollars in large companies, e.g., at Google [47] and
Microsoft [44]. Past studies also highlighted long waiting times as the main pain point of CI in those companies [63] —
which would also be reduced if fewer builds get executed.

2.2 Characterizing Builds

There are many existing works aiming to characterize builds. Some studies investigated the reasons for build failures.
Some studies [73, 108] sort common build failures into compilation [122], unit test, static analysis [120], and server
errors. Paixão et al. [76] studied the interplay between non-functional requirements and failing builds. Other studies
found factors that contribute to build failures: architectural dependencies [13, 93], and other more specific factors, such
as the stakeholder role, the type of work [59], the programming language [12], the interactions among developers
[91, 113], or their socio-technical congruence [60]. Other less obvious factors that could cause build failures are build
environment changes or flaky tests [82]. Some work [82][51] also found that build failures tend to occur consecutively,
which Gallaba et al. [33] describe as “persistent build breaks”.

Other works aimed to characterize builds to predict build outcomes. Hassan et al. measured social, technical,
coordination, and prior-certification characteristics of builds, and applied decision trees to predict their outcome [41].
Finlay et al. characterized builds according to complexity, Halstead, and basic metrics to also predict their outcome with
a Hoeffding tree [28]. Xia et al. [114, 115] and Luo et al. [66] measured characteristics of a build and its project, and
used them to evaluate multiple machine learning predictors to predict build outcomes. Xie and Li [116] improved the
prediction of previous approaches by applying online AUC optimization. Saidani et al. also measured build and team
characteristics, and applied a deep learning classifier [87]. Hassan et al. found that features related to the previous build
are most effective when predicting build outcomes [42]. Ni et al. [75] and Chen et al. [15] also found that some specific
historical features (like the last build status) were more useful than other features about the current build (like the
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number of files changed) for predicting the build’s outcome. Other studies found change characteristics that correlate
with failing builds, such as: code churn [48, 82], short dependency distance from the tests [70], build tool [48], and
statistics on the last build, and the history of the committer [75]. Barrak et al. found that features about code smell
can be effective for predicting build outcomes [6]. Santolucito et al. predict builds that would fail due to configuration
errors, using static analysis [90]. Finally, Ghaleb et al. [38] studied the impact of noisy data on the results of build
outcome predictors.

In contrast with these past works that aim to understand why builds fail or to characterize failing builds, our
work (HybridCISave) has a different goal: reducing the cost of CI by skipping passing executions. This different goal
motivated multiple design decisions in HybridCISave that were not present in these past works. First, HybridCISave
has the incentive to be highly safe, i.e., it prefers to make mistakes by executing a passing build than by skipping a
failing build. For this incentive, HybridCISave combines multiple build selection techniques that were designed to be
safe, and it requires multiple test selection techniques to agree before it decides to skip a test. Second, HybridCISave
skips the execution of both builds and tests. Since its goal is to reduce the cost of CI, it values skipping both kinds
of executions. Third, HybridCISave combines the predictions of past build selection techniques that follow multiple
criteria: skipping builds that will likely pass (e.g., Jin20), and skipping builds that developers may decide to skip (e.g.,
Abdalkareem19). This way, it diversifies its opportunities to save cost in CI.

2.3 Approaches to Reduce the Cost of CI

Past efforts to reduce the cost of CI focused on either executing fewer builds, or on reducing the computational cost
of each build. Towards this latter goal, past efforts focused on understanding what causes long build duration, e.g.,
[37, 105], and on reducing it, by skipping test executions or other steps within a build.

The techniques that save cost in CI by running fewer builds (i.e., build selection techniques) follow two main
strategies: skipping builds that they predict that developers will want to skip (CI-Skip Commits) [1, 2, 88], or skipping
builds that they predict to pass [51, 55]. Abdalkareem et al. studied the characteristics of CI-Skip Commits, and created
techniques to predict and skip them, based on rules [2] and machine learning [1]. Saidani et al. proposed a technique
to predict and skip CI-Skip Commits using an evolutionary algorithm [88]. Jin et al. focused on skipping builds that
they predict to pass, using machine learning with features correlated with build passes [51], and with build passes and
CI-Skip Commits [55].

In contrast with the techniques to predict build outcomes that we described in 2.2, these techniques that predict and
skip builds have the incentive to be highly safe, i.e., to incur a low ratio of mistakes even if it means skipping fewer
builds. The techniques that skip CI-Skip Commits ([1, 2, 88]) aim to provide high safety by focusing on predicting and
skipping builds that developers would want to skip. The techniques that skip builds that pass ([51, 55]) aim to provide
high safety by providing a customizable prediction sensitivity threshold that can be used to make them inclined to skip
fewer builds (and thus make fewer mistakes).

When comparedwith the previous build selection techniques ([1, 2, 51, 55, 88]), our proposed technique (HybridCISave)
aims to provide higher cost savings, since it is a hybrid build and test selection technique. HybridCISave can skip the
execution of full builds (as build selection techniques do), and it can also skip some of the tests in the builds that it
decides not to skip fully (which build selection techniques do not do). Additionally, HybridCISave’s build selection
component (HybridBuildSkip) is also different than previous build selection techniques. HybridBuildSkip is different
than Abdalkareem19 [2], Abdalkareem20 [1] and Jin20 [51] individually: HybridBuildSkip uses them as some of the
features in its predictor (see §3.1). HybridBuildSkip is also different than Saidani21 [88]: HybridBuildSkip uses a
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random forest classifier (see §3.1), and Saidani21 uses an evolutionary algorithm with different features (see §5.1.1).
HybridBuildSkip is also different than Jin22 [55]: Jin22 uses as features Abdalkareem19’s CI-Skip Rules in addition to
4 CI-Run Rules that they defined (see §5.1.1), and HybridBuildSkip uses as features the output of Abdalkareem19’s
predictor in addition to the output of 5 other predictors (see §3.1).

Other existing techniques aim to reduce cost in CI by skipping tests within each build. These techniques focused
on skipping, e.g., tests that historically failed less [44], that test unchanged classes [101] and modules [25, 100, 101],
that are predicted to pass by a machine learning classifier [67], skipping complete test suites [77], based in a particular
industrial context [69], or in a specific programming language [56]. Recent work also proposed a framework to
evaluate and compare these techniques [24]. These techniques are based on regression test selection (RTS), e.g.,
[39, 78, 84, 85, 117, 118, 124, 126], which was a popular field before CI was proposed.

This strategy of skipping tests within builds provides different benefits to the strategy of skipping full builds. Skipping
tests within builds enables the possibility of saving computational cost on all builds (both in those that pass and in those
that fail). However, it misses the opportunity of skipping other steps in a build, e.g., build-preparation steps, which are
saved by the techniques that skip full builds [52, 53]. Our proposed technique (HybridCISave) leverages the benefits of
both strategies (skipping full and partial builds) by combining them.

A related effort for improving CI targets prioritizing its tasks to provide early fault observation. The most common
approach in this direction is to apply test case prioritization (TCP) techniques, e.g., [22, 23, 65, 68, 74, 86] so that builds
fail faster. Another similar approach achieves faster feedback by prioritizing builds instead of tests [64] when there is a
queue of builds waiting to be executed due to having limited computation resources.

Prioritization-based techniques advance feedback but are not able to save cost, i.e., all builds and tests still get
executed. In contrast, our work aims at cost-saving in CI by skipping (build or test) executions.

Other existing techniques aim to reduce cost in CI by skipping other steps within a build. Some skip retrieving
unnecessary files from within dependencies [14], and others skip unnecessary steps to prepare the build environment
[31, 35]. A final strategy aims to reduce cost in CI by batching together multiple builds [7, 8] or multiple targets [109].

In contrast to these approaches, our proposed work HybridCISave aims to reduce cost in CI by skipping full and
partial builds. We chose this focus because skipping the execution of (all or some) tests provides the highest opportunity
for cost saving —the vast majority of build execution time is spent executing tests (91.5%) [31]. Still, future work could
explore adding further extensions to HybridCISave to also skip other steps within a build, e.g., unnecessary build
preparation or compilation steps.

2.4 Other Automated Support for CI

Techniques have been proposed to support CI in other ways. For example: Ziftci et al. proposed a technique to
automatically locate the changes that induced a failure in CI [127]. Hassan et al. proposed a technique to automatically
fix build failures caused by errors in build scripts [43]. Zhang et al. proposed a technique to cluster builds that fail for
the same reason [123]. Tronge et al. proposed a technique to adapt performance testing of HPC applications to CI [104].

3 OUR APPROACH: HYBRIDCISAVE

Here, we describe our novel hybrid build-and-test selection technique: HybridCISave. We represent our design of
HybridCISave in Figure 1. HybridCISave is a hybrid technique that consists of two separate components: HybridBuild-
Skip to predict which builds to skip fully (depicted in the top half of Figure 1 and described in §3.1), and HybridTestSkip
to predict which builds to skip partially (depicted in the bottom half of Figure 1 and described in §3.2). First, for a given
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software build, HybridCISave applies HybridBuildSkip to predict if the build will pass. If so, HybridCISave skips
the build fully (i.e., all its preparation steps and test executions), saving its cost. Second, if HybridBuildSkip instead
predicted the build to fail (and thus should not be skipped fully), then HybridCISave will still try to save partial cost
in that build. In that case, HybridCISave applies HybridTestSkip to each individual test in the build, and predicts
whether it will pass (and skips its execution, saving its cost) or it will fail (and executes it).

3.1 HybridBuildSkip

Given a build, HybridCISave first executes HybridBuildSkip to predict if the build will pass, and if so, skip it and save
its cost. We depict HybridBuildSkip’s design in the top half of Figure 1. For a given build, HybridBuildSkip extracts
the characteristics of its changes, and of its individual tests. Then, it uses those characteristics as features for 6 existing
techniques: 4 build selection techniques [1, 2, 51], and 2 test selection techniques [39, 67]. Each of these techniques uses
a different set of features. HybridBuildSkip executes all 6 techniques, and then uses their 6 resulting predictions as
features for a final machine learning predictor (random forest), to obtain a final prediction. All 6 features are categorical,
with a value of 0 if their corresponding technique predicted the build to pass, and 1 if it predicted it to fail. If the final
prediction is that the build will pass, HybridBuildSkip skips its execution. If the final prediction is that the build will
fail, HybridBuildSkip tries to save some of its cost by applying HybridTestSkip (see §3.2).

We train HybridBuildSkip as a cross-project predictor, i.e., we train it on the past builds of different software
projects than the one in which we apply it. This allows it to train on a larger amount of data, and it aids in the cold-start
problem [112], i.e., in software projects where only a few builds have been executed. We also make HybridBuildSkip
customizable, i.e., we can customize its prediction sensitivity threshold to varying levels of tolerance to skipping failing
builds. Most machine learning algorithms return a probability that an instance belongs to a class. The prediction
sensitivity threshold can be used to determine how high the predicted probability needs to be for the algorithm to
actually classify the instance into the class. For example, setting HybridBuildSkip’s prediction sensitivity threshold to
0.1 means that if the technique predicts that a build is at least 10% likely to fail, then HybridBuildSkip will classify the
build as a potential failure that should be run (and not skipped). Thus, lower prediction-sensitivity thresholds will make
a technique more inclined to predict builds to fail, and higher prediction-sensitivity thresholds will make a technique
more inclined to predict builds to pass. Next, we describe the 6 techniques that HybridBuildSkip uses for its features.

3.1.1 Build-selection-based Features. The first 4 features of HybridBuildSkip contain the prediction produced by 4
build selection techniques. To provide high safety, we decided to use all the existing build selection techniques, which
were originally proposed for high safety: 2 techniques that skip only the builds that they predict that developers will
want to skip (CI-Skip Commits): Abdalkareem19 [2] and Abdalkareem20 [1]; and 1 technique that skips the builds
that it predicts to pass with high confidence: Jin20_Safe [51]. We also used 1 technique that skips builds that are not
subsequent to a build failure: Subsequent Failure.

One other build selection technique was recently proposed to skip the builds that developers would want to skip
(CI-Skip Commits): Saidani21 [88]. However, we decided to not include it in our approach because of its high execution
time. In our studied dataset, obtaining Saidani21’s prediction about a build took longer time than actually running
the build itself (defeating the purpose of the prediction), for 52% of our studied projects. We also did not include in
HybridBuildSkip’s design another build selection technique that skips builds that it predicts to pass, since it was
not published at the time of designing our technique [55]. Next, we provide more details about the 4 build selection
techniques that HybridBuildSkip uses as features.
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F1: Abdalkareem19 [2] is a build selection approach that uses a collection of rules (CI-Skip Rules) to skip builds that
developers often decide to skip (CI-Skip Commits). Abdalkareem19 skips builds that only changed: source comments,
formatting, non-source files, meta-files, or version-release files.

F2: Abdalkareem20 [1]: is a build selection approach that also skips builds that developers often decide to skip
(CI-Skip Commits), but it now uses a machine learning predictor (decision tree). Abdalkareem20 informs its predictor
with CI-Skip Rules, but also with features of Diffusion (number of modified subsystems, directories, files, and their
distribution), Size (lines of code added, deleted, in a file before the change, and the types of files changed), Purpose
(whether the change is a bug fix, a merge commit, or another maintenance activity according to keywords like
“refactoring”), History (number of developers that changed the modified files, time between last and current change,
and number of unique changes to the modified files), Experience (developer experience, recent developer experience,
and developer experience in the modified subsystems), and Text (weighted terms in the commit message using TF-IDF).

F3: Jin20_Safe [51] is a build selection approach that skips builds that it predicts will pass with high confidence.
Jin20_Safe follows a 2-phase algorithm. First, it applies machine learning (random forest) to predict whether a build
will pass, and if so, skip it. We used the safest variant (Jin20_Safe, with a prediction sensitivity of 0%), so that it only
skips builds when it is 100% confident that they will pass. Jin20_Safe’s second phase is triggered when it executes a
build and it observes that it fails. In such case, it continues executing the next build, until it observes that it passes,
and then goes back to the predicting phase. To make its predictions, Jin20_Safe uses features of: Size (the number of
changed lines, files, tests, and commits in the build), and Project (the number of executable source lines and tests in the
project, and the age of the project).

F4: Subsequent Failures (SF) is a feature that skips builds that it predicts to pass. This is a simple feature that
predicts all builds to pass, except those that are subsequent to a build failure. This is based on the observation that
build failures are often followed by other build failures, and build passes are often followed by other build passes
[42, 51, 75]. We decided to include this feature alongside other build selection techniques because we expect it to be
strongly predictive. As an additional note, in our experiments, this feature uses realistic information, i.e., it can only see
the status of the last build that was actually executed (not skipped).

3.1.2 Test-selection-based Features. The next 2 features of HybridBuildSkip contain the prediction produced by 2 test
selection techniques. To provide high cost savings, we also use features from test selection techniques in addition to the
features from build selection techniques. HybridBuildSkip uses a test selection technique that was originally proposed
for continuous integration (Machalica19 [67]), and a popular test selection technique that was proposed outside the
context of continuous integration (Gligoric15 [39]). To provide high safety, we adapted these test selection techniques to
predict that a build should be skipped only if it predicts that all its tests should be skipped. This makes these techniques
safer, since they only decide to skip a build when they predict that every single one of its tests should be skipped.

While other test selection techniques were proposed for continuous integration, we decided to not include them in
our design for various reasons. Shi et al.’s and Elsner et al.’s are adaptations of Gligoric15 (which we already include in
our design), to proprietary environments [25, 100], and to skip tests according to both changed classes and modules
[101]. Kauhanen et al.’s [56] was designed to work only with Python. Martins et al.’s [69] was proposed to work in a
proprietary environment. Pan et al.’s [77] does not provide predictions for individual tests, only a single prediction about
the whole test suite, which does not allow us to adapt it for higher safety by aggregating individual test predictions, as
we did for other test selection techniques. Herzig et al.’s [44] is inclined to skip tests with long execution times (see
§3.2.1), making it unlikely to skip all tests within a build (we believe that rarely every single test in a build takes long to
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execute). So, we decided to use Herzig et al.’s for HybridTestSkip (see §3.2), but not for HybridBuildSkip. Finally,
Elsner et al.’s [24] presented a framework to evaluate test selection techniques, but not a technique itself. Next, we
provide more details about the 2 test selection techniques that HybridBuildSkip uses as features.

F5: Gligoric15 [39] is a test selection technique that skips tests that do not exercise the changed files in the build.
The intuition for this technique is that tests that do not exercise changed files cannot detect faults in them. Gligoric15
tracks the files that each test exercises dynamically, i.e., it monitors the execution of the tests and the code under test to
collect the set of files accessed during execution of each class, computes the checksum for these files, and stores them in
a dependency file. The accessed files can include either executable code (e.g., class files in Java) or external resources
(e.g., configuration files).

F6: Machalica19 [67] is a test selection technique that skips tests that it predicts to pass. Machalica19 predicts
which tests will pass using a gradient boosted decision trees classifier (XGBoost) with features of Change (history of
changed files, number of changed files, number of targets using the changed files, changed file extensions, and number
of authors), Target (historical failure rate, project name, and number of tests in the target), and Cross (minimal distance
between the changed files and the prediction target, and number of common tokens between the path of the modified
files and the path of the test).

3.2 HybridTestSkip

When HybridBuildSkip predicts that a build will fail and thus should not be skipped, HybridCISave then executes
HybridTestSkip to try to skip some of its tests (those that it predicts to pass). HybridTestSkip allows HybridCISave to
increase its cost savings, by saving some cost even from builds that it predicts to fail. We also designed HybridTestSkip
to provide high safety: it predicts a test to pass when multiple test selection techniques predict it to pass.

We depict HybridTestSkip’s design in the bottom half of Figure 1. For a given build that was predicted to fail,
HybridTestSkip iterates over its tests. For each test, it executes 3 test selection techniques [39, 44, 67] and uses their 3
resulting predictions to provide a final prediction. HybridTestSkip predicts that a test will pass if all 3 test selection
techniques predict that it will pass. Otherwise, it predicts that the test will fail. If the final prediction is that the test will
pass, HybridTestSkip skips its execution. If the final prediction is that the test will fail, HybridTestSkip executes it.

HybridTestSkip does not require training itself, since it is rule-based. Only the test selection techniques that it uses
need to be trained.

3.2.1 Features in HybridTestSkip. HybridTestSkip informs its prediction with the same test-selection-based features
as HybridBuildSkip, using the same rationale (see §3.1.2) — with the difference that this time HybridTestSkip provides
individual predictions per test, instead of per build. Another difference is that HybridTestSkip uses a third test selection
technique that was proposed for continuous integration: Herzig15 [44]. We decided to not use Herzig15 as part of
HybridBuildSkip because it would rarely skip all tests in a build (it tends to skip mostly tests with long execution times,
as we elaborate below), but we decided that it would be useful to use it for HybridTestSkip, to save the execution time
of some tests. We already described Gligoric15 [39] and Machalica19 [67] in §3.1.2. We describe Herzig15 below.

Herzig15 [44] is a test selection technique that skips tests for which it expects that executing them (𝐶𝑜𝑠𝑡𝑒𝑥𝑒𝑐 ) has
higher cost than skipping them (𝐶𝑜𝑠𝑡𝑠𝑘𝑖𝑝 ) [45]. As a result, Herzig15 tends to skip tests that have a long execution time.

Herzig15 estimates the cost of executing a test (𝐶𝑜𝑠𝑡𝑒𝑥𝑒𝑐 ) based on the cost of machine time and the cost of inspecting
a potential failure that was not caused by a defect, using the formula:
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𝐶𝑜𝑠𝑡𝑒𝑥𝑒𝑐 = 𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 + 𝑃𝐹𝑃 ∗𝐶𝑜𝑠𝑡𝑖𝑛𝑠𝑝𝑒𝑐𝑡 (1)

𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 is a constant representing the per minute infrastructure cost. Herzig et al. set it at 0.03 $/min in their
experiments.

𝑃𝐹𝑃 is the probability that the combination of test and execution context will report a false alarm, that the executed
test will fail due to any other reason than a defect. Herzig et al. set it at 0.04 in their experiments.

𝐶𝑜𝑠𝑡𝑖𝑛𝑠𝑝𝑒𝑐𝑡 is a constant representing the average cost rate of test failure inspections. Herzig et al. set it at $9.60 in
their experiments.

Herzig15 estimates the cost of skipping the test (𝐶𝑜𝑠𝑡𝑠𝑘𝑖𝑝 ) based on the human cost of fixing a failure that has been
unobserved for some time delay, as per the formula:

𝐶𝑜𝑠𝑡𝑠𝑘𝑖𝑝 = 𝑃𝑇𝑃 ∗𝐶𝑜𝑠𝑡𝑒𝑠𝑐𝑎𝑝𝑒𝑑 ∗𝑇𝑖𝑚𝑒𝑑𝑒𝑙𝑎𝑦 ∗ #𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑠 (2)

𝑃𝑇𝑃 is the probability that the combination of test and execution context will detect a defect. Herzig et al. set it at
0.07 in their experiments.

𝐶𝑜𝑠𝑡𝑒𝑠𝑐𝑎𝑝𝑒𝑑 is a constant representing the average cost of an escaped defect (an unobserved failure). Herzig et al. set
it at $4.20 per developer and hour of delay in their experiments.

𝑇𝑖𝑚𝑒𝑑𝑒𝑙𝑎𝑦 is the average time span required to fix historic defects. In our experiments, we measured this value as
the average time window between a build failing and later passing, averaged for all the builds in each studied project.

#𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑠 is the number of engineers in the project. In our experiments, we used the “team size” value reported in
TravisTorrent for each project.

We replicated Herzig15 using the same values for the constants in the formulae that they used in their experiments.

4 RESEARCH QUESTIONS

We evaluated HybridCISave in multiple ways, over a large dataset of continuous integration builds. First, we compared
its effectiveness with that of all existing build selection techniques (RQ1).

Next, we evaluated the extent to which HybridCISave’s design contributed to providing high cost savings and
high safety. We evaluated how much the decision of skipping partial builds in addition to full builds provided higher
cost savings than not doing it (RQ2). We also evaluated the decision of combining test selection techniques with build
selection techniques to achieve higher cost savings (RQ3). We also evaluated the decision of using a random forest
classifier as opposed to other machine learning models (RQ4). Then, we also evaluated the decision of combining
multiple test selection techniques to achieve higher safety (RQ5).

Finally, we also studied the relative importance of HybridBuildSkip’s (RQ6) and HybridTestSkip’s (RQ7) features,
and the impact of the time that HybridCISave takes to make its predictions over the cost savings that it produces (RQ8
and RQ9). In our experiments, we answer the following research questions:
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Experiment 1: Evaluating HybridCISave

RQ1: How effective is HybridCISave saving cost and observing failures, compared to existing build selection ap-
proaches?

Experiment 2: Ablation Study: Evaluating HybridCISave’s design decisions

RQ2: What is the benefit of having a test selection component in addition to a build selection component?
RQ3: What is the benefit of having test selection approaches to predict build outcomes?
RQ4: What is the benefit of using a random forest classifier as opposed to other machine learning models in Hybrid-

BuildSkip?
RQ5: How much cost-saving and failure-observation can HybridTestSkip achieve?

Experiment 3: Evaluating the importance of HybridCISave’s feature techniques

RQ6: What is the relative importance of each feature technique in HybridBuildSkip?
RQ7: What is the relative importance of each feature technique in HybridTestSkip?

Experiment 4: Measuring HybridCISave’s execution time

RQ8: What is the total execution time of HybridCISave and its individual components?
RQ9: How much cost does HybridCISave save if we account for its execution time?

4.1 Studied Dataset

We performed our study over the Travis Torrent dataset [12] in its latest version, the snapshot for January 25th, 2017
[11], which includes 1,359 projects (423 Java projects and 936 Ruby projects). For our experiments, we curated this
dataset in multiple ways.

We removed “toy projects” from the data set by studying those that are more than one year old, and that have at least
200 builds and at least 1,000 lines of source code, which are criteria applied in multiple other works [48, 75]. To be able
to explore test information, we also filtered out those projects whose build logs do not contain any test information. We
focused our study on builds with passing or failing outcome, rather than error or canceled. Besides, in Travis a single
push or pull-request can trigger a build with multiple jobs, and each job corresponds to a configuration of the building
step. As many existing papers have done [33, 49, 83], we considered these jobs as a single build, since they share the
same build result and duration. After this filtering process, we obtained 82,427 builds (495,322 build instances) from 100
projects (82 Java projects and 18 Ruby projects). We provide multiple statistics about the studied projects in Table 1.

To be able to implement our approach and replicate existing work, we extended the information in TravisTorrent of
the 100 projects that resulted from our filtering process in multiple ways. First, we built scripts to download the raw
build logs from Travis and parse them to extract all the information about test executions, such as test name, duration,
and outcome. Replicating existing approaches required additional information that TravisTorrent does not provide
for builds, such as the content of commit messages, changed source lines and changed file names. For that, we also
mined additional information about commits in the projects’ code repositories through Github such as changed file
names and changed line content, by running scripts to read the content of commits provided by TravisTorrent for
each build using Github’s API. Finally, we built a dependency graph for the source code of each project using a static
analysis tool (Scitool Understand [92]) to compute the paths between files for implementing existing techniques. For
Java projects, we ran Scitool Understand on the command line to scan them. Understand generates a .CSV file with the
static dependency graph of the project. For Ruby projects, we obtained their static dependency graph using Rubrowser
[26]. We used a project’s static dependency graph to check if there is a path between changed files and test files.
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Table 1. Characteristics of the studied projects.

Project Type # Projects Stat LOC # Builds Build Duration (s) Build Fail Ratio

Complete dataset 100

Min 1,402 201 48 0.4%
Median 37,872 526 610 7.5%
Max 1,033,909 14,133 11,347 63.0%
Cumulative 4,639,716 82,427 280,143,720 16.2%

Java projects 82

Min 1,402 201 48 0.4%
Median 13,733 398 347 6.0%
Max 1,033,909 4,815 2,593 63.0%
Cumulative 308,247 49,318 35,707,512 11.8%

Ruby projects 18

Min 3,154 212 104 1.3%
Median 24,139 1,111 1,808 14.1%
Max 533,998 14,133 11,347 58.1%
Cumulative 1,557,289 33,109 244,436,208 22.8%

5 EXPERIMENT 1: EVALUATING HYBRIDCISAVE

In the first experiment, we measured the cost reduction and failure observation provided by HybridCISave.

5.1 RQ1: How effective is HybridCISave saving cost and observing failures, compared to existing build
selection approaches?

5.1.1 Research Method. We applied HybridCISave in a large dataset (§4.1), and we compared its effectiveness with
that of all other build selection techniques. The goal of this experiment is to understand whether the design decisions
that we included in HybridCISave helped it achieve higher effectiveness than the other techniques that follow the same
strategy of reducing the cost of CI by skipping builds. Other strategies to reduce the cost of CI exist, e.g., by skipping
some build preparation steps, such as some environment setup or compilation steps [14, 31, 35]. These other strategies
are complementary to build selection and can be used in combination with any build selection technique. Future work
could explore the impact of these combinations.

Studied Techniques. To compare with HybridCISave, we replicated all other build selection techniques: Abdalka-
reem19, Abdalkareem20, Jin20, Saidani21, and Jin22.

HybridCISave: Our proposed approach (see §3). Since its HybridBuildSkip component is customizable (see §3.1),
we evaluated it for multiple prediction-sensitivity thresholds: 0–0.1 in intervals of 0.001 (101 thresholds in total).
Higher prediction-sensitivity thresholds make HybridBuildSkip more likely to predict builds to pass.

Abdalkareem19 [2]: A rule-based build selection approach based on CI-Skip Rules: rules that characterize builds that
are likely to be skipped by developers (more details in §3.1.1).

Abdalkareem20 [1]: A machine-learning predictor (random-forest) using Abdalkareem19’s CI-Skip Rules as features
(more details in §3.1.1). We picked its random-forest variant since it is reported as the best performance classifier
for Abdalkareem20 [1].

Jin20 [51]: A 2-phase build selection approach, using a random-forest classifier with size and project features (more
details in §3.1.1). Jin20 is also customizable in its prediction sensitivity threshold, so we also study multiple
thresholds for it (including its safest variant, Jin20_Safe).

Saidani21 [88]: A build selection approach that predicts and skips builds for CI-Skip Commits based on the adaptation
of a Strength-Pareto Evolutionary Algorithm. Saidani21 informs its predictor with the features of Abdalkareem20,
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and some additional ones. The complete list is: the Current Commit (number of modified subsystems, directories,
files, entropy, lines added, lines deleted, day of the week, commit message, and types of files changed), its Purpose
(classification as addition, corrective, merge, perfective, preventative, non-functional, or none, whether it is a
fix, documentation, build-files-only, meta-files only, a merge, media, only source code, only formatting, only
comments, or maintenance activity), and its link to Last Commits (number of recently skipped commits, number
of recently skipped commits by the current committer, result of the previous build by the current committer,
number of unique last commits in the modified files, time since last modification of the files, number of developers
that last touched the files, size of the changed lines before the commit, number of commits made by the developer
before this commit, number of commits made by the developer before this commit in this subsystem, and the
number of commits made by the developer before this commit weighted by their age).

Jin22 [55]: A build selection approach that applies a random forest classifier to predict and skip builds that it predicts
to pass. For its features, Jin22 uses Abdalkareem19’s CI-Skip Rules and a collection of additional rules (CI-Run
Rules) that make CI-Skip Rules safer. The complete list of features checks whether the changes are: only source
comments, only formatting, only source comments or formatting, only non-source files, only meta-files, only
version-release files, not reachable by tests, on build scripts, on configuration files, increasing the number of
platforms tested, or subsequent to a build failure.

Training and Testing. We used the data set described in §4.1, which includes 82,427 builds from 100 projects. We
used 10-fold cross validation to evaluate machine-learning-based techniques: HybridCISave, Machalica19, Jin20, and
Jin22. Each fold has 10 distinct projects which are randomly assigned. Each build in the testing fold is tested by a
classifier trained on the other 90 projects. Abdalkareem20, however, cannot be trained in our dataset. Abdalkareem20
trains its classifier with developer-skipped commits, and our dataset has too few of these commits. Thus, we trained
Abdalkareem20 in the 10-project dataset in which it was originally evaluated [1] and tested it in ours (see §4.1). For
Saidani21, we used the pre-trained model that they provide in their replication package [89]. Rule-based techniques
(Abdalkareem19, Gligoric15, and Herzig15) do not require training. So, we applied them directly to our dataset.

As in past work [51], we simulated a realistic scenario in which the outcomes of builds that are skipped are not
available for coming predictions. That is, we only update the information connected to the last build, e.g., for Subsequent
Failure, when it was actually executed (not when it was skipped). When a predictor predicts the upcoming build as a
pass, we skip the build and accumulate the value of its size factors (such as number of changed source files) for the next
build, as past work did [51].

Metrics.Wemeasured 3 metrics in this evaluation: Saved_Duration,Observed_Build_Failures, andObserved_Test_Failures,
as in previous work [1, 2, 51, 53]. We measured each of these metrics across all the builds of a project. Then, we report
the median value of each metric across all projects.

Saved_Duration is the proportion of skipped build duration among all build time. We measured skipped build duration
as the aggregation of the duration of all the build steps (e.g., build preparation steps, or tests) that a technique decides
to skip, for all the builds in a project. We measured all build duration as the aggregation of the duration of all the build
steps (e.g., build preparation steps, or tests) included in all the builds in a project. It measures how much a technique
reduced computational cost. A technique performs better in this metric if it saves a higher ratio of build duration.

𝑆𝑎𝑣𝑒𝑑_𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑠𝑘𝑖𝑝𝑝𝑒𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑎𝑙𝑙 𝑏𝑢𝑖𝑙𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
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Observed_Build_Failures is measured as the proportion of failing builds that are correctly predicted (i.e., not skipped),
among all failing builds. It measures the ability of a technique to not make mistakes (i.e., not skip failing builds). A
technique performs better in this metric if it correctly predicts a higher ratio of failing builds.

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝐵𝑢𝑖𝑙𝑑_𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 = 1 − # 𝑠𝑘𝑖𝑝𝑝𝑒𝑑 𝑓 𝑎𝑖𝑙𝑖𝑛𝑔 𝑏𝑢𝑖𝑙𝑑𝑠

# 𝑎𝑙𝑙 𝑓 𝑎𝑖𝑙𝑖𝑛𝑔 𝑏𝑢𝑖𝑙𝑑𝑠

Observed_Test_Failures is measured as the proportion of failing tests that are observed among all failing tests. It
measures the ability of not making mistakes in test granularity. A technique performs better in this metric if it detects a
higher ratio of failing tests.

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑇𝑒𝑠𝑡_𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠 = 1 − # 𝑠𝑘𝑖𝑝𝑝𝑒𝑑 𝑓 𝑎𝑖𝑙𝑖𝑛𝑔 𝑡𝑒𝑠𝑡𝑠

# 𝑎𝑙𝑙 𝑓 𝑎𝑖𝑙𝑖𝑛𝑔 𝑡𝑒𝑠𝑡𝑠

5.1.2 Results. Figure 2 shows the results of all our studied techniques in terms of Saved_Duration,Observed_Build_Failures
and Observed_Test_Failures. The Y axis represents the value of each metric (they are all measured as percentages). Each
data point in Figure 2 represents the median value of one technique’s performance on one metric across all 100 projects.
The X axis represents the prediction sensitivity thresholds that we studied for HybridCISave. For the techniques that
are not customizable (Abdalkareem19, Abdalkareem20, and Saidani21), we represent their results as flat lines.

Like HybridCISave, Jin20 and Jin22 are also customizable in their prediction sensitivity. However, they all provide
different trade-offs between saved cost and observed failures at different prediction thresholds. So, to be able to compare
HybridCISave to Jin20 and Jin22, we fit their curves in the Observed_Build_Failures metric. For each studied threshold
of HybridCISave, we plot the variant of Jin20 and Jin22 that provides the closest (but lower) Observed_Build_Failures.
Then, we also plot in the other graphs the corresponding ratio of Saved_Duration and Observed_Test_Failures for that
variant at that threshold. This allows us to observe which technique provides the highest cost savings, given similar
levels of safety.

To ease comparing HybridCISave with techniques that are not customizable (Abdalkareem19, Abdalkareem20, and
Saidani21), we highlight the threshold for which HybridCISave provided the closest ratio of Observed_Build_Failures to
them, in all graphs for all metrics. We also highlight the most conservative (safest) variant of Jin20 (Jin20_Safe).

As we described in §3.1.1, we observed that Saidani21 often took longer to decide whether to skip a build than actually
running the build itself (for 52% of the projects in our dataset), which defeats the purpose of skipping the build. In such
cases, we make Saidani21 time out and we execute the build, allowing the observation of its result. For that reason, we
report the results of Saidani21 as two variants: its variant tested on all projects in our dataset (Saidani21_ALL) and its
variant tested on the 48% of projects in which its execution time is lower than the build time (Saidani21_PART). We
could not specifically pinpoint why Saidani21 has high execution time, since their replication package only provides
its compiled code (but not its source code) [89]. However, long execution times are typical in genetic programming
algorithms (on which Saidani21 is based). This is because genetic programming iteratively evaluates a large space of
candidate solutions, searching for one that maximizes a fitness function. Thus, genetic programming typically runs its
search for a long time, and only stops when it reaches a user-defined stopping criterion (typically after it reaches a
given number of evaluated solutions). This creates a trade-off: a larger number of evaluated solutions makes it more
likely to find one with higher fit, but it also increases search time (and thus execution time).

Our results for RQ1 in Figure 2 show that HybridCISave provided higher cost savings at the highest safety

when compared with previous techniques.
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Fig. 2. Cost saved and value kept by HybridCISave and existing build selection techniques
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HybridCISave provided higher cost savings than all studied techniques, at similar levels of safety. In the top graph
of Figure 2, HybridCISave provided higher values of Saved_Duration than any other technique at their highlighted data
point (the one at which the compared technique provided similar Observed_Build_Failures than HybridCISave). When
compared with customizable techniques (Jin20 and Jin22), HybridCISave also provided higher ratios of Saved_Duration
than them, for all the studied thresholds (i.e., ratios of Observed_Build_Failures) — with the only exception of a few
thresholds for Jin22.

When comparing HybridCISave with the existing technique that observes most build failures (Abdalkareem20), we
can observe that HybridCISave achieves higher cost-saving (16%) than Abdalkareem20 does (5.1%), while observing
same ratio of failing builds (96%).

The next safest technique is Abdalkareem19. We can observe that HybridCISave is able to save higher cost (34.3%)
than Abdalkareem19 (22%) when they observe the same ratio of build failures (81%).

Next, we compare HybridCISave with Saidani21. When executing Saidani21 over all the projects in our dataset
(Saidani21_ALL), it took longer to decide whether to skip a build than the time to actually execute the build (and thus
timed out and we executed the build), for a majority of projects (52%). Therefore, in the median case, Saidani21_ALL
had no effect: it produced a median of 0% Saved_Duration and of 100% Observed_Build_Failures. Even for such high
level of safety, HybridCISave provided higher cost savings than Saidani21_ALL: 14% median Saved_Duration.

To better understand the effect that Saidani21 could have on projects with low build duration, we also measured
its results separately in the remaining 48% projects (Saidani21_PART). Saidani21_PART obtained a median 40.6%
Saved_Duration and of 58% Observed_Build_Failures. In this case, HybridCISave also provided higher cost savings at
similar safety: median 63.5% Saved_Duration and of 62% Observed_Build_Failures.

We also compared HybridCISave to Jin20, and observed that HybridCISave provided higher Saved_Duration given
similar ratio of Observed_Build_Failures, for all thresholds. We particularly highlight three data points. (1) At Jin20’s
safest threshold (Jin20_Safe), HybridCISave provided higher cost savings: Saved_Duration (median 28% vs. median
19%) with the same Observed_Build_Failures (median 87%). (2) HybridCISave could achieve even higher safety than
Jin20_Safe: it was able to observe median 100% failures (vs. median 87% for Jin20_Safe) and save some cost: 14% median
Saved_Duration. (3) At Jin20’s threshold of lowest safety (median 40% Observed_Build_Failures), HybridCISave could
achieve much higher Saved_Duration: up to median 93%.

When comparing HybridCISave to Jin22, we also observed that HybridCISave provided higher Saved_Duration
given similar ratio of Observed_Build_Failures, for most thresholds (except for 7 thresholds out of 101 studied). Generally,
we observed that Jin22 provided higher cost savings than Jin20, given similar ratios of safety, but HybridCISave
provided even higher cost savings than Jin22.

Finally, HybridCISave provided as much safety (100%) as the safest existing technique, while also pro-
viding higher cost savings. The top and middle graphs of Figure 2 show that HybridCISave reached 100% Ob-

served_Build_Failures (as much as the safest existing techniques Saidani21_ALL and Jin22), while at the same time
providing higher cost savings than them (14% Saved_Duration for HybridCISave at threshold 0.048, compared to 0% for
Saidani21_ALL and 5% for Jin22).

Summary for RQ1: HybridCISave provided higher cost savings at the highest safety when compared with previous
techniques.
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6 EXPERIMENT 2: ABLATION STUDY: EVALUATING HYBRIDCISAVE’S DESIGN DECISIONS

In the second experiment, our goal is to understand the extent to which each design decision in HybridCISave
contributed to providing high cost savings and high safety. We first studied the design decisions skipping partial builds
(HybridTestSkip) in addition to full builds (HybridBuildSkip) in RQ2, and the decision of combining test selection
techniques with build selection techniques in HybridBuildSkip in RQ3. Then, we studied the decision of using a
random forest machine learning model in HybridBuildSkip in RQ4. And finally, we studied the decision of combining
multiple test selection techniques to achieve higher safety in RQ5.
6.1 RQ2: What is the benefit of having a test selection component in addition to a build selection

component?

6.1.1 Research method. To answer this research question, we followed the same research method that we described
for RQ1 (§5.1.1), but with different techniques and similar metrics. We used the same 10-fold cross-validation across
projects (10 randomly-selected projects in each fold) for machine-learning-based techniques, and we applied rule-based
techniques directly (they do not require training).

Studied Techniques. We compared the effectiveness of skipping both full and partial builds (HybridCISave) with
the effectiveness of skipping full builds only (HybridBuildSkip).

Metrics.We made evaluations in two dimensions: cost-saving and failure-observation. We measured the cost-saving
ability with Saved_Duration: the proportion of skipped duration among total duration, similarly to how we evaluated
HybridCISave in RQ1. Measuring cost saving in terms of saved duration (i.e., time) allows us to account in a single metric
for saving both full and partial builds. Then, we measured the ability to observe failures using Observed_Test_Failures:
the proportion of executed failing tests among all failing tests. We only used Observed_Test_Failures to be able to account
in a single metric for observations of failures, whether they were part of a full build or partially-skipped build.

6.1.2 Results. We plot our evaluation results in Figure 3. This figure shows the median value for each metric across
our studied projects, for multiple prediction thresholds.

In Figure 3, we observe that HybridCISave saved consistently higher cost than HybridBuildSkip, with its highest
benefit occurring at threshold 0.044, in which it saved 9pp higher cost. This shows that the strategy of skipping both
full and partial builds is able to increase cost-saving for our build selection approach. We also observed that when the
threshold is bigger than 0.8, the benefit becomes negligible because HybridBuildSkip is skipping the majority of builds
in those range of thresholds and there is little space for HybridTestSkip to save. We can also make an observation that
when HybridBuildSkip skips no builds (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 0.025), HybridCISave is still able to provide some cost-saving
(1.4%) by skipping partial builds. This cost-saving is produced by its HybridTestSkip component.

Figure 3 also shows that HybridCISave and HybridBuildSkip observed similar ratios of test failures, i.e., by
adding HybridTestSkip in HybridCISave, we incurred only a minimal decrease in Observed_Test_Failures. The largest
difference happened at threshold 0.057, in which HybridCISave observed 92.7% of failing tests while HybridBuildSkip
observed 94.5%. The smallest difference occurred at thresholds 0–0.027, where HybridBuildSkip and HybridCISave
detected the same ratio of failing tests: 100%. Therefore, we can conclude that our strategy of skipping full and partial
builds was able to save more cost, while observing almost the same ratio of test failures as HybridBuildSkip.

Summary for RQ2: Having a test selection component in addition to a build selection component increased the cost
savings provided by HybridCISave.
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Fig. 3. Cost saved and test failures observed by HybridCISave and HybridBuildSkip.

6.2 RQ3: What is the benefit of having test selection approaches to predict build outcomes?

6.2.1 Research method. To answer this research question, we followed the same research method that we described for
RQ2 (§6.1.1), but with different techniques.

Studied Techniques. We compared the effectiveness of combining both build-selection and test-selection techniques
to predict and skip builds (HybridBuildSkip) with the effectiveness of only combining build selection techniques
for the same purpose (HybridBuildSkip-Base). HybridBuildSkip-Base is a variant of HybridBuildSkip that only
takes as features Abdalkareem19, Abdalkareem20, Jin20_Safe, and Subsequent Failure. To better compare these two
techniques, we adjusted HybridBuildSkip-Base to have closest but smaller failure observations so that we can compare
their saved duration as we did for Jin20 and Jin22 in RQ1.

6.2.2 Results. We plot in Figure 4 the median value for each metric across our studied projects, for multiple prediction
thresholds. Figure 4 shows that by adding test selection approaches to predict build outcomes, HybridBuildSkip
consistently saved more cost and observed more test failures than HybridBuildSkip-Base.
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Fig. 4. Cost saved and test failures observed by HybridBuildSkip and HybridBuildSkip-Base.

This shows that test selection approaches can be effective for predicting build outcomes. Finally, we want to highlight
that, while no previous technique observed 100% failures in our evaluation, both our proposed techniques achieved
high ratios of failure observation, while also saving some cost: 9% saved build duration by HybridBuildSkip (with 100%
observed failing builds), which HybridCISave improved to 14% saved build duration (with 99.8% observed failing tests).

Summary for RQ3: Having test selection approaches to predict build outcomes in HybridBuildSkip increased both
its cost saving and failure observation ability.

6.3 RQ4: What is the benefit of using a random forest classifier as opposed to other machine learning
models in HybridBuildSkip?

6.3.1 Research Method. To answer this research question, we followed the same research method that we described
for RQ1 (§5.1.1), but with different techniques and different metrics. We used the same 10-fold cross-validation across
projects (10 randomly-selected projects in each fold) for machine-learning-based techniques, and we applied rule-based
techniques directly (since they do not require training).
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Studied Techniques.We modified HybridBuildSkip to use different machine learning models, to understand how
they would impact its performance. HybridBuildSkip is the only component of HybridCISave that uses a machine
learning algorithm. We studied four machine learning algorithms: Random Forest (HybridBuildSkip_RF), Ad-
aBoost (HybridBuildSkip_ABT), Multiple Layer Perceptron (HybridBuildSkip_MLP), and Logistic Regression
(HybridBuildSkip_LR). We used the default configuration in scikit-learn for all our studied machine learning
algorithms [80]. We also included one baseline technique (HybridBuildSkip_VOTE) that makes its predictions based
on the majority vote of all the feature techniques in HybridBuildSkip.

Metrics. For other research questions, we measured metrics like Saved_Duration and Observed_Build_Failures, to
understand the impact on cost savings and safety that our studied techniques would produce for developers. For this
research question, however, we are interested in studying the traditional metrics of Precision, Recall, and F1-score, to
compare the performance of different machine learning models. We again measured each of these metrics across all the
builds of a project, and reported the median value of each metric across all projects, for each studied threshold.

We measured Precision as the number of correctly predicted build failures divided by the number of builds that the
technique predicted as build failures. We measured Recall as the number of correctly predicted build failures divided by
the number of actual build failures. We measured F1 score as the harmonic mean of Precision and Recall.

6.3.2 Results. Figure 5 shows the median precision, recall, and F1 that each variant of HybridBuildSkip obtained
across projects, for each studied prediction threshold.

We make multiple observations in Figure 5. First, VOTE obtained a low F1-score (median 12%) could correctly predict
the majority of build failures (median 90% recall), but with a very low precision (median 8%). That is, it would skip few
build failures, but also save very little cost.

Machine learning algorithms achieved higher scores than the HybridBuildSkip_VOTE baseline technique on all
metrics, particularly as their prediction thresholds increased. Higher prediction thresholds made techniques more likely
to predict builds to pass, which decreased their recall and increased their precision. F1-scores also increased with higher
prediction thresholds, since prediction and recall scores became more similar to each other.

Generally, all algorithms followed this trend, and performed very similarly to each other. HybridBuildSkip_MLP
and HybridBuildSkip_LR provided very similar precision, recall, and F1-score to each other, for all thresholds. Hybrid-
BuildSkip_RF and HybridBuildSkip_ABT also performed similarly, but with a small difference: for a few thresholds
(approximately 0.083 to 0.1), HybridBuildSkip_ABT provided approximately 10pp higher recall (approximately 50% vs.
40%) and HybridBuildSkip_RF provided approximately 20pp higher precision (approximately 40% vs. 20%). This means
that, for those thresholds, HybridBuildSkip_ABT was approximately 10pp safer but saved approximately 20pp less
cost than HybridBuildSkip_RF. Some practitioners may prefer the trade-off offered by HybridBuildSkip_ABT and
others may prefer the one offered by HybridBuildSkip_RF, for these specific thresholds.

Finally, to be able to compare techniques with a single number, we also calculated the mean F1-score for each variant
across thresholds, and we show it in Table 2. This table also shows that RF and ABT performed very similarly to
each other, that MLP and LR performed very similarly to each other, and that all machine learning models improved
over VOTE. We could have selected either of RF or ABT as the best-performing model for the design of our proposed
technique HybridBuildSkip, but we ended up selecting RF because it provided slightly higher mean F1-score. Also, RF
was faster to execute in our experiments.
Summary for RQ4: Random Forest provided the best prediction performance —slightly better than AdaBoost, and
much better than a baseline technique based on the majority vote.
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Fig. 5. Cost saved and value kept by HybridBuildSkip under different machine learning algorithms
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Table 2. Mean F1-score across thresholds for different variants of HybridBuildSkip using different Machine Learning models.

HybridBuildSkip Variant Mean F-1 score

HybridBuildSkip_RF (Random Forest) 0.1918
HybridBuildSkip_ABT (AdaBoost) 0.1915
HybridBuildSkip_MLP (Multiple Layer Perceptron) 0.1794
HybridBuildSkip_LR (Logistic Regression) 0.1788
HybridBuildSkip_VOTE (Majority Vote) 0.1370

6.4 RQ5: How much cost-saving and failure-observation can HybridTestSkip achieve?

6.4.1 Research Method. To answer this research question, we followed the same research method that we described for
RQ1 (§5.1.1), but with different techniques and metrics. We used the same 10-fold cross-validation across projects (10
randomly-selected projects in each fold) for machine-learning-based techniques, and we applied rule-based techniques
directly (they do not require training).

Studied Techniques.We compared HybridTestSkip with its individual components, to study whether it provided
higher safety. HybridTestSkip is the test-selection component of our proposed approach (see §3). Its goal is to
predict and skip some tests within the builds that were not selected to be skipped (more details in §3.2). Gligoric15
[39] is a test selection technique that skips tests that do not exercise the changed files in the build (more details in
§3.1.2).Machalica19 [1] is a test selection technique that skips tests that it predicts to pass, using an XGBoost classifier
(more details in §3.1.2).Herzig15 [51] is a test selection technique that skips tests for which it expects that executing it
has higher cost than skipping it (more details in §3.2.1).

Metrics. Weused twometrics to evaluate HybridTestSkip (in the same two dimensions as for evaluatingHybridCISave,
but adapted to the test granularity). We measured HybridTestSkip’s cost-saving ability using metric Skipped_Tests:
the proportion of skipped tests among all tests. We measure HybridTestSkip’s ability to observe failures using
Observed_Test_Failures: the proportion of executed failing tests among all failing tests. We show the distribution of
these two metrics across our studied projects in Figure 6. Since HybridTestSkip is a rule-based technique, we don’t
apply different thresholds for it.

6.4.2 Results. In Figure 6, we can observe that HybridTestSkip is able to provide moderate cost savings: a median
Skipped_Tests ratio of 11.3%. This shows that our strategy of combining test selection techniques in a hybrid way can
also provide some cost-savings. We can also see that HybridTestSkip could observe a median value of 100% failing
tests across our studied projects. This shows that HybridTestSkip saved cost in a relatively safe way, i.e., skipping some
tests while capturing the majority of failing ones. Thus, our design in HybridTestSkip allows it to save some cost in
test execution while still maximizing the ratio of test failures that get observed. This design makes it more conservative
than its feature techniques —it saves less cost but observes more failures. Alternative designs for HybridTestSkip (e.g.,
using machine-learning predictors over the same features, or relaxing the number of techniques that need to agree to
skip a test) may achieve higher cost savings, but may also cause fewer test failures to be observed (i.e., may skip more
failing tests). We chose our current design of HybridTestSkip to prioritize failure observation over cost saving.

Summary for RQ5: Combining multiple test selection techniques in HybridTestSkip enabled it to achieve very high
safety (median 100% Observed_Test_Failures), while also saving some cost (median 11.3% Skipped_Tests).
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Fig. 6. Cost saved and value kept by HybridTestSkip

7 EXPERIMENT 3: EVALUATING THE IMPORTANCE OF HYBRIDCISAVE’S FEATURE TECHNIQUES

In this experiment, we aim to understand the relative importance of each of the feature techniques used in Hybrid-
BuildSkip and HybridTestSkip.

7.1 RQ6: What is the relative importance of each feature in HybridBuildSkip?

7.1.1 Research Method. We applied the Information Gain Attribute Evaluation [5] on all the features of HybridBuild-
Skip for all projects in our dataset. Table 3 shows the median value for each feature and its corresponding Information
Gain across the studied projects, ranked from higher to lower values. We applied the same method to measure the
information gain of features in HybridBuildSkip-Base and we found that it produced the same ranking.

7.1.2 Results. In Table 3, we observe that Subsequent Failures was the feature with the highest Information Gain value
(0.159). This would signal that failing builds often continued to fail for a few more builds, until developers fixed the
problem. In other words, it seems that it often took developers a few attempts to fix the bug and turn the build to pass.
We investigated our dataset deeper, and observed that 40% of build failures happened after another build failure (e.g.,
commit SonarSource/sonarqube: 458dcff), which would support that conjecture. Past work also observed similar
high ratios of subsequent failing builds (52%) in other datasets [51], and that the status of the last build is an effective
feature to predict build outcomes [15, 42, 75]. Other studies observed that developers using IDEs can also take multiple
attempts to fix bugs, e.g., [10, 40]. This observation also shows the benefit for HybridBuildSkip to have included SF as
an individual feature, since it obtained much higher Information Gain than the other features.
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Table 3. Importance of HybridBuildSkip’s features.

Feature Name Information Gain (median value)
F6: Subsequent Failures 0.1590

F4: Gligoric15 [39] 0.0060
F3: Jin20_Safe [51] 0.0040

F2: Abdalkareem20 [1] 0.0038
F1: Abdalkareem19 [2] 0.0034
F5: Machalica19 [67] 0.0028

All other studied features had a smaller impact on the build outcome prediction. Among them, Gligoric15 had the
highest Information Gain value. We also investigated deeper to understand its effect. We observed that in our dataset
40% of builds had no test to cover the changes (e.g., commit jOOQ/jOOQ: e66bac6). Also, more than 90% of builds with
no test to cover the changes are passing builds. This means that when Gligoric15 predicted a build to pass because it
did not find tests to cover the changes, it was an effective signal that the build would pass. This also shows that our
design of HybridBuildSkip benefited from adapting the outcome of test selection techniques to the build selection
problem, and adding them to the combination of its features. Gligoric15 was the second most strongly predictive feature
in HybridBuildSkip, and it was based on a test selection technique.

Jin20_Safe, Abdalkareem19, and Abdalkareem20 had similar Information Gain values to each other, signaling that
they were useful predictors, but not as strong as Subsequent Failure or Gligoric15.

Finally, Machalica19 had the lowest Information Gain value. We investigated deeper, and observed that it rarely
predicted all tests in a build to pass (less than 15% of the time), so it rarely provided a discriminatory signal for
HybridBuildSkip.
Summary for RQ6: Subsequent Failures was the most effective feature of HybridBuildSkip. After that, Gligoric15
[39] had the highest importance.

7.2 RQ7: What is the relative importance of each feature in HybridTestSkip?

7.2.1 Research Method. We applied the FOIL Information Gain Attribute Evaluation on each rule of HybridTestSkip
for all projects in our dataset. FOIL Information Gain [30] is used to evaluate rule-base classification and it computes the
difference in information content of the current rule and its predecessor, weighted by the number of covered positive
examples. Table 4 shows the median value for each feature and its corresponding FOIL Information Gain across projects.

7.2.2 Results. In Table 4, we observe that Gligoric15 was the feature with the highest FOIL Information Gain: 2.08. In
fact, Gligoric15 was also the feature with second highest information gain for HybridBuildSkip (after Subsequent
Failures). This confirms that the strategy chosen by Gligoric15 (skipping tests that cannot reach the changed files) was
a strong predictor of whether tests will pass or fail. We observed in RQ6 that Gligoric15 was an important feature
to predict whether all the tests in a build will pass. Therefore, it is normal that it would also be a strong predictor of
whether individual tests will pass.

The next most important feature of HybridTestSkip was Machalica19, with FOIL Information Gain of 1.63.
This shows that Machalica’s strategy of applying machine learning and considering historical test information
was also a valuable predictor for test outcome. This indicates that tests that failed often in the past are more
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Table 4. Importance of HybridTestSkip’s features

Feature Name Information Gain (median value)
Herzig15 [44] 0.02
Gligoric15 [39] 2.08
Machalica19 [51] 1.63

likely to continue failing. For example, when the test named org.semanticweb.owlapi.api.test.anonymous.-

AnonymousTurtleAssertionTestCase for project owlcs/owlapi failed in build #252, it had historically failed in
6 other previous builds: #240 (d69e419c327fbde640b772a3ef7b385113863bef), #243, #246, #247, #248, and #249.

Finally, Herzig15 had a much lower Information Gain than the other two features: 0.02. We investigated deeper, and
we observed that Herzig15 has a tendency to skip tests that have very long executions. Its formula estimates that tests
are worth skipping when the cost of skipping them, probably not observing their failure, and finding and fixing the
problem later is lower than the cost of executing them. Therefore, the cost of executing a test has to be very high for
Herzig15 to decide that it is worth skipping. As a result of this property, Herzig15 very rarely decides that a test should
be skipped. Since Herzig15 most often provides the same prediction, it is rarely a good predictor.

Summary for RQ7:Among the feature techniques of HybridTestSkip, Gligoric15 [39] was the most effective, followed
by Machalica19 [67], and Herzig15 [44] was least important.

8 EXPERIMENT 4: MEASURING HYBRIDCISAVE’S EXECUTION TIME

Since executing multiple techniques and combining them could potentially incur high execution times, we study
in this last experiment, whether HybridCISave’s execution time reduces its achieved cost savings. We measured
HybridCISave’s execution time in our Experiments 1 and 2, on a machine with a 2.5 GHz CPU, 32 GB RAM, Ubuntu
16.04.3 LTS and Python 3.5.2.

8.1 RQ8: What is the total execution time of HybridCISave and its individual components?

8.1.1 Research method. In this experiment, we measured the execution time of HybridCISave and all the techniques it
uses, including Gligoric15, Jin20_Safe, Abdalkareem20, Abdalkareem19, Machalica19 and Herzig15, in all the builds
of our dataset. We computed their run-time in seconds across studied projects. For those techniques with a machine
learning classifier, we only included its prediction time, i.e., we didn’t include the training time since the training
process can be performed and updated offline (separately from the CI cycle). We also measured the build duration in
our studied projects to compare the execution time of these techniques with the time spent in builds.

8.1.2 Result. We report in Table 5 the results of this experiment as the median value of median and max values of actual
execution time of HybridCISave and its components across our studied projects. We observe that in general the total
execution time of HybridCISave is negligible compared to the build duration — the median value of HybridCISave’s
execution time is 0.0116 seconds and the median value of build duration is 441.5 seconds. This shows that the execution
time of HybridCISave has a negligible impact on its achieved cost-reduction.We can also observe that HybridBuildSkip
takes much longer time than HybridTestSkip (median 0.0116 seconds vs. 0.007 seconds), since it requires more
information and its prediction process is also more time-consuming. This also makes HybridBuildSkip take similar
time to HybridCISave.
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Table 5. Time taken to execute HybridCISave per build.

Median (s) Max (s)
HybridCISave (total) 0.011600 0.183400

HybridBuildSkip (total) 0.011600 0.183200
HybridTestSkip (total) 0.007000 0.174500

HybridCISave (self) 0.000011 0.000044
HybridBuildSkip (self) 0.001500 0.002000
HybridTestSkip (self) 0.000044 0.000100

Gligoric15 0.003700 0.153900
Herzig15 0.000001 0.000001

Machalica19 0.002900 0.021700
Abdalkareem19 0.000001 0.000001
Abdalkareem20 0.001600 0.031600

Jin20_Safe 0.001500 0.002200

Build duration 441.500000 2,151.000000

By comparing the actual execution time of each component in HybridCISave, we observe that test selection
approaches generally take longer time. This is because normally there are many tests in one build, so the prediction of
test outcomes has to be repeated many times for each build. Among test selection approaches, Gligoric15 takes highest
time (median 0.0037 seconds per build). Another test selection approach (Machalica19) takes higher time (median
0.0029) than any other build selection technique. However, Herzig15 and HybridTestSkip (self) take less time because
they use heuristics, which are less time-consuming. Finally, we found that among build selection techniques, those
approaches that require machine learning prediction (Jin20_Safe, Abdalkareem20 and HybridBuildSkip (self)) require
longer execution time. Among them, Abdalkareem20 takes highest time (median 0.0016 seconds per build) because
its predictor is triggered for every commit in one build which means it needs to predict more times than other build
selection approaches. Jin20_Safe takes less time since it is designed to not have to make predictions for every build —
once it observes a failing build, it continuously executes the build until it observes a passing build. These results show
that the run times of our studied techniques are negligible compared to the build times.

Summary for RQ8: The time required to execute HybridCISave was negligible when compared to the time required
to run a build.

8.2 RQ9: How much cost does HybridCISave save if we account for its execution time?

8.2.1 Research method. To understand how HybridCISave’s cost savings change when accounting for its execution
time, we plot its results obtained in Experiment 2 for the Saved_Duration metric, before (HybridCISave) and after
(HybridCISave_Real) we deduct HybridCISave’s execution time from it.

8.2.2 Result. Figure 7 shows the median value of Saved_Duration across studied projects. We observe that in general
the achieved Saved_Duration by HybridCISave_Real is very close to the cost reduction achieved by HybridCISave,
which means the execution time of HybridCISave has a negligible impact on its achieved cost-reduction. All of the
differences are smaller than 0.02pp. The biggest difference is 0.016pp: at the point of threshold 0.018, the execution
time makes the saved duration of HybridCISave drop from 1.458% to 1.442%. The smallest difference is 0.001pp: at
the point of threshold 0.033, the execution time pulls the saved duration down from 5.732% to 5.731%. Finally, for
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Fig. 7. Cost saved by HybridCISave with or without considering its execution time.

HybridCISave’s highest cost-saving while also achieving high ratio of observed failures (threshold 0.047), the difference
between HybridCISave_Real and HybridCISave is only 0.01pp. As a result, we conclude that the execution time of
HybridCISave has a negligible impact on its ability to save cost.

Summary for RQ9: The execution time of HybridCISave had a negligible impact on its ability to save cost.

9 DISCUSSION

We discuss some interesting points observed in this paper to advance this area of research.

Combining approaches in different ways. Prior work combined multiple approaches in many different ways for
better performance. For example, Zhang [124] combined regression test selection strategies in both file and method
levels. In this work, we take advantage of existing techniques by treating each of them as a feature of our predictor.
Instead of manually picking the strength of each technique, we asked the machine learning algorithm to decide how to
account for each technique’s prediction in the given build. In our experiments, we found that the predictions of all
existing build selection approaches have an impact on the eventual prediction of HybridCISave. We also found that
Subsequent Failure is the most effective feature that also confirms the findings from previous studies [42, 51, 75]. In the
future, we will explore other possible ways to combine build selection techniques.

Combining approaches using various machine learning algorithms. Other prior work studied what machine
learning classifiers provide the best accuracy for build outcome predictions, e.g., [1]. In this work, we also studied various
machine learning algorithms for HybridBuildSkip including Random Forest, AdaBoost and Multilayer Perceptron.
We evaluated HybridBuildSkip under these three machine learning algorithms and found that they all have similar
performance in terms of cost-saving and failure-observation. We selected Random Forest classifier for our approach
because it was the fastest when making its predictions.

Predicting build outcomes through test selection approaches. Prior work [124] combined approaches at file
and test levels to achieve better accuracy in test selection. In this work, we also combine approaches from different
granularities, i.e., build level and test level. We take advantage of test selection approaches to predict build outcome — if
all tests in one build are predicted to be passing and thus can be skipped, we will predict the whole build as a passing
build and not execute it. We applied two test selection approaches for HybridBuildSkip and both had some impact on
the predictions, especially Gligoric15.
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Predicting build failures in build preparation steps. Test selection techniques predict whether a test case e.g., [67]
or the whole test suite e.g., [77] will fail (and execute it) or pass (and skip it). Build selection techniques predict whether
a build will fail (and execute it) or pass (and skip it). Builds can fail when one or more of their tests fail, but also when
their build preparation steps fail (e.g., when setting up the execution environment, even before any test was executed
[43, 55]). This kind of build failures can only be predicted by build selection techniques, since test selection techniques
only predict the outcome of tests.

However, few build selection techniques explicitly use features that try to capture failures caused by reasons other
than faults in the source code. For example, Abdalkareem19 [2] in fact predicts that builds that only contain changes
to non-source files will pass. To the extent of our knowledge, only Jin22 [55] considers features that explicitly try to
capture failures in build preparation steps: by considering changes in build scripts (e.g., “pom.xml”) and configuration
files (e.g., “travis.yml”) as possibly causing failures. Since our approach HybridCISave was designed before Jin22
was published, it does not use it in its predictor. Thus, HybridCISave also does not explicitly use features to predict
failures in build preparation steps (even if it does predict some of them correctly, thanks to its other features). Future
improvements to HybridCISave could consider adding more features to predict failures in build preparation steps to
improve its safety even further.

Build failures that are hard to be detected by existing techniques. We further explored the failure reason of
failing builds that can only be detected by 1 feature of HybridCISave (all of failing builds can be detected by at least one
feature). We found that 6 of 11 failing builds only include changes on project configuration files, e.g., “pom.xml”. This
shows that this kind of configuration files can also result in build failures and future techniques can take advantage of
that. Besides, we observed that 4 of 11 failing builds only include Travis configuration file (“travis.yml”). This further
validates our previous discussion point: that the configuration file of Travis CI can cause failing builds and developers
may struggle to write the configurations correctly [111].

Build selection approach execution time. Since HybridBuildSkip and HybridCISave rely on predictions from
many other existing approaches, an important question is whether the total execution time of all these techniques could
have a relatively big impact on the saved duration achieved by our approaches. However, our experiment 3 showed that
the execution time of HybridBuildSkip and HybridCISave (including all their components) is negligible compared
with their saved build duration. This motivates the future design for more complex and time-consuming build selection
approaches. It also highlights the importance of measuring the execution time of the technique itself in a technique
evaluation, to account for its impact on the cost savings achieved.

Aggressive cost-saving for build selection. Different developers will have different preferences in the trade-off
between observing failing builds early and saving build effort. For this reason, prior work [51] and the techniques
proposed in this paper are designed as customizable, to cater to different preferences. For aggressive configurations
of our approach, HybridCISave is able to save 93% of build duration and still observe 40% of failing builds. Some
practitioners may prefer to achieve high cost savings, even if the achieved ratio of observed failures is limited. Future
approaches could aim to save cost aggressively first, and then also increase the ratio of observed build failures.

Different dimensions to evaluate build selection approaches. Previous (and this) work [1, 51, 53] evaluate build
selection approaches in two dimensions: cost-saving and failure-observation. However, since there is a trade-off between
these two dimensions, techniques may work well in one dimension, but not the other one. Therefore, there should be
an easier way to compare build selection approaches. One way to solve this in future work is to design new metrics.
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Fig. 8. Cost saved and value kept by HybridCISave for different programming languages

Previous work [51] proposes a balanced metric as the harmonic mean of cost-saving and failure-observation, but
there may be better ways to measure this balance. We took a different approach to simplify the comparison between
customizable techniques in Experiment 1, in which we first chose the variants that achieved similar ratios of observed
failures to then compare their cost-saving ability. This allowed us to use a single metric for comparison. However, not
all techniques are customizable, which motivates future work to propose better metrics to compare the trade-off of cost
savings and observed failures of different approaches.

Different performance of HybridCISave on different projects. Our dataset contains 100 software projects in
two programming languages: 82 projects in Java, and 18 projects in Ruby. It is possible that our proposed technique
would provide different results for different programming languages. To study this possibility, we ran an additional
experiment. We separately evaluated HybridCISave’s performance on Saved_Duration and Observed_Build_Failures on
Java and Ruby projects at the threshold of 0.048 (the highest threshold for which HybridCISave provides 100% median
Observed_Build_Failures). We plot the results in Figure 8.

Figure 8 shows that HybridCISave provided very similarmedian values of Saved_Duration andObserved_Build_Failures
for both Ruby and Java projects. The main difference was that the results for Ruby projects had higher variance (we can
see that the interquartile range was wider and the whiskers were farther apart for Ruby projects).

However, this observed wider variance in Ruby could be the result of many different factors, so we cannot necessarily
attribute it to the different programming language. For example, it could be because our studied Ruby projects are more
diverse than our studied Java projects, or simply because we studied a limited number of Ruby projects (18). A future
study could mine software projects, clustering those with similar characteristics (e.g., programming languages, team
sizes, or age), to study the different behavior of build and test selection techniques across clusters.

Finally, we find it very encouraging that HybridCISave provided very similar median scores for our metrics for both
Ruby and Java. That makes us think that our results would generalize to other datasets and programming languages.

10 THREATS TO VALIDITY

10.1 Construct Validity

We use metrics as proxies to represent the value — observation of failures — and cost — build duration — in CI. These
are metrics that developers have reported as describing the value and cost of CI, e.g., [19, 29, 47, 75], and are metrics
that other existing approaches for saving cost in CI have used, e.g., [2, 67].
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Another threat to construct validity concerns whether developers would want to use HybridCISave in their
environments. Multiple factors make us believe that developers would find HybridCISave very useful in their software
development activities.

First, similar techniques to skip the execution of tests are already developed and being used at large software
development companies, e.g., at Microsoft (Herzig15 [44]) and Facebook (Machalica19 [67]).

Second, previous studies directly asked developers about their impressions regarding build selection. Abdalkareem et

al. [2] surveyed 40 professional developers and found that 75% of them considered the ability to automatically determine
if a build should be skipped to be nice, important, or very important. They also observed that developers already skip
commits manually, according to their personal criteria, “to save time”, and “to not waste computing resources”.

Third, past studies also studied developers actually using a build selection technique. Saidani et al. [88] observed 14
professional developers using an automated build selection technique, and found that developers accepted around 90%
of the recommendations of the tool. Their studied developers found the technique’s recommendations valuable (e.g.,
“It’s bad for this commit to wastefully use server time” ). Finally, like Abdalkareem19, they also observed that their studied
developers already had their own custom mechanisms in place to sometimes skip builds (e.g., “I found the bot very useful
to me, basically what I used to do is to skip the entire build pipeline if certain condition is met based on my ‘safe list’ ”.)

10.2 Internal Validity

To guard internal validity, we carefully tested our evaluation tools on subsets of our dataset while developing them.
Our analysis could also be influenced by incorrect information in our analyzed dataset. For this, we selected a popular

dataset that has been analyzed in other studies. Existing work [33] reports noise data points on this dataset, however,
many of the techniques to save cost in CI [2, 42, 51, 64] were originally evaluated on TravisTorrent projects. Additionally,
we extensively curated TravisTorrent, removing: toy projects following standard practice [48, 75], unusable projects for
test-granularity techniques, and cancelled builds as in past work [33, 49, 83].

We also took into consideration the advice in the studies by Gallaba et al. [33] and by Ghaleb et al. [38] to account for
potential noise in the TravisTorrent dataset. We did so in the following ways: (1) Sometimes developers manually flag
failures to be ignored when they cannot officially support them, and thus should not represent the status of the build
[33]. We considered passing builds with flagged ignored failures as passing. (2) Sometimes builds have both passing and
failing jobs [33]. We considered failing builds with passing jobs as failing builds. If at least one job fails, it signals a
problem, informing developers. (3) Sometimes developers exclude jobs from a build after they fail in a previous build
[38]. We follow the same logic in this case: we consider the build as failing when at least one of its jobs fails, and passing
when the failing jobs are excluded, and therefore all jobs pass. (4) Sometimes builds fail after another build failure
[33, 38]. We considered builds that fail after another failure as correctly labeled, because they flag an unsolved problem,
being informative for developers. (5) Sometimes builds fail because of environmental issues, such as internal errors of
the CI platform, or running out of space in memory or disk [38]. We consider such failing builds as failing, since they
inform developers of a problem that needs to be resolved.

Some of our selected projects may not be resource constrained, however, we believe that the evaluation results
should not be influenced, and our technique still benefits those projects that have less resource problem.

Our results may also be affected by flaky tests causing spurious failing builds. Flaky tests are tests that produce
non-deterministic behavior, i.e., that fail inconsistently, without changes to the code under test [9, 20, 61, 79]. Common
causes for flaky tests are concurrency issues, network connectivity problems, or test order dependencies [79]. Flaky
tests are common in software projects, and CI is normally applied in the presence of flaky tests, since companies do
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not consider it economically viable to remove them, e.g., [67, 71]. Furthermore, previous build selection techniques
[1, 2, 51, 55, 88] kept flaky tests in their datasets in their evaluations. Some previous work removed flaky tests from
their datasets in their evaluation of a test selection technique, e.g., Machalica et al. [67] and Pan et al. [77], by removing
those that produced different outcome when re-running them without changes to the code. After this process, Pan et al.

[77] found that flaky tests only affected a minority of their dataset (0.067% of their test suite runs), and other studies
found that flaky tests were a minority of the wider population of tests [44]. For these reasons, we believe that flaky
tests had a limited impact in our experiments.

Another possible threat is the fact that our experiments did not keep the chronological order of builds across
projects. We trained HybridCISave as a cross-project predictor, using builds from other projects that were not in the
test set, including some builds that chronologically happened after the tested builds, i.e., future builds. Violating the
chronological order of builds can lead to overfitting when it is done within a project. If a predictor’s training set contains
future builds of the same project, it could artificially discover trends that it could not have discovered in a realistic
scenario, i.e., in which the future builds are not yet available for training. However, we believe that including future
builds in HybridCISave’s training from other projects that were not in the test set in our experiments has little risk of
overfitting, since any future trends discovered in the training projects may or may not be predictive of future trends
that the tested projects will follow.

HybridTestSkip is a rule-based technique that does not require any training data. We also increase our internal
validity by following the existing techniques’ instructions to replicate their techniques, including using the same
machine learning algorithm. We only consider prediction time as the execution time and we don’t include training time,
but we believe that in the real-world scenario, training process is usually completed during less loaded period.

We didn’t include the training time of HybridCISave since we believe that the training can happen offline and may
not add to the cost of computation. However, we calculated the training time (4.584 seconds) for all components in one
single training of HybridCISave as a reference for developers to decide their own preferable frequency for training.
Our decision of replicating Gligoric15 to consider only static dependencies may have slightly limited HybridCISave’s
results. Applying tools other than Understand to generate the dependency graph may make HybridCISave save even
more cost. Using only static dependencies allows us to provide a rule that is simple to put into practice, and that could
be more easily applicable to more programming languages (since the mechanisms to create dynamic dependencies are
more diverse across programming languages). While including dynamic dependencies may have made it safer, it would
also make it harder to implement and to potentially require a much higher computational cost to apply it.

The accuracy of the tools that we used to run static analysis (SciTools Understand [92] and Rubrowser [26])
could also have impacted the ability of HybridCISave. We used these tools to capture static dependencies between
source code classes. SciTools Understand captured the following dependencies among classes: "calls", "implements",
"includes/imports", "inherits", "inits", "modifies", "overrides", "sets", "throws", and "uses". Rubrowser captured all modules
and classes definitions, and all constants that are listed inside a module/class and linked them together. Then, we used
the resulting graph of classes and dependencies among them from these tools to determine if the changed files were
reachable by the project’s tests. A possible threat to validity is that bugs in the source code of these tools may make
them miss some dependencies (false negatives), or capture some dependencies that do not really exist (false positives),
which could affect the accuracy of Gligoric15 as a feature of HybridCISave. Also, since both SciTools Understand [92]
and Rubrowser [26] capture static dependencies, they both can have false positives (capturing dependencies that will
not be executed in runtime). Such false positives would cause HybridCISave save less cost than it could if we had used
dynamic analysis tools.
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10.3 External Validity

To increase external validity, we selected the popular dataset TravisTorrent based on Travis CI, which has been analyzed
by many other research works. The projects we chose were all Java or Ruby projects (18% of projects are Ruby projects),
because there are no projects with other programming languages in the data set. Although these two programming
languages are popular, different CI habits in other languages may provide slightly different results to the ones in this
study. Finally, our cost-saving technique may not be perfectly suitable for software projects that cannot afford a single
delay in observing failing builds. However, we believe this happens rarely according to the existing study [2].

Another threat to external validity questions whether the thresholds will generalize to other projects. We do not
present these thresholds as absolute values to be reused across software projects. These values may not generalize to
other projects. We simply highlight them to show the trade-off between cost-saving and failure-observation in response
to developers’ preferences. Our advice for developers using HybridCISave in their software project is to empirically
customize its prediction thresholds to their preference, for their software project.

11 CONCLUSIONS AND FUTUREWORK

In this paper, we studied the benefit that could be obtained by combining multiple build and test selection techniques,
and whether such combination introduces high prediction times that could threaten the achieved cost savings. For this
goal, we first designed HybridBuildSkip, the first build selection technique that leverages multiple existing approaches
as features. We also designed another novel technique to achieve cost savings in CI by skipping both full and partial
builds (HybridCISave), which outperformed HybridBuildSkip in our experiments in terms of cost savings, while only
negligibly reducing its ratio of observed failures. Finally, we studied the execution time of HybridCISave to better
understand whether its execution time reduces its total saved duration, finding that it had a negligible impact. In the
future, we will explore extending HybridCISave’s algorithm with other machine learning algorithms (or combinations
of them) and additional features to anticipate bugs, e.g., analyzing code-change history [94–96, 98, 99], alternative testing
activity, e.g., [36, 57, 58], decision-making metadata, e.g., [3, 4, 72], developer expertise, e.g., [16, 97], or cross-language
issues, e.g., [17], or by combining it with other strategies, e.g., also skipping unnecessary dependencies [14] or build
preparation steps [31, 35], to try to achieve even better trade-offs of cost saving and failure observation.

12 REPLICATION

We include a replication package for our paper [54].
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