
Automatic Prediction of Developers’ Resolutions for
Software Merge Conflicts

Waad Aldndnia, Na Menga, Francisco Servantb,∗

aVirginia Polytechnic Institute and State University, Blacksburg, VA, 24060, U.S.A.
bITIS Software, Universidad de Málaga, Málaga, 29071, Spain

Abstract

In collaborative software development, developers simultaneously work in paral-
lel on different branches that they merge periodically. When edits from different
branches textually overlap, conflicts may occur. Manually resolving conflicts can
be tedious and error-prone. Researchers proposed tool support for conflict res-
olution, but these tools barely consider developers’ preferences. Conflicts can
be resolved by: keeping the local version only KL, keeping the remote version
only (KR), or manually editing them (ME). Recent studies show that developers
resolved the majority of textual conflicts by KL or KR. Thus, we created a ma-
chine learning-based approach RPredictor to predict developers’ resolution
strategy (KL, KR, or ME) given a merge conflict.

We did large-scale experiments on the historical resolution of 74,861 con-
flicts. Our experiments show that RPredictor achieved 63% F-score for
within-project prediction and 46% F-score for cross-project prediction. Com-
pared with other classifiers, RPredictor provides the highest effectiveness
when using a random forest (RF) classifier. Finally, we proposed a variant
technique RPredictorv, which enables developers to customize its prediction
conservativeness. For a highly conservative setting, RPredictorv achieved
34% effort saving while minimizing the risk of producing incorrect prediction
labels.
Keywords: Software merge, textual conflicts, conflict resolution, prediction

1. Introduction

In collaborative software development, programmers often create separate
branches to perform distinct maintenance tasks (e.g., add new features, fix
bugs, or refactor code) in parallel. When developers merge edits from different

∗Corresponding author
Email addresses: waada@vt.edu (Waad Aldndni), nm8247@vt.edu (Na Meng),

fservant@uma.es (Francisco Servant)

Preprint submitted to Elsevier December 12, 2023

branches, separate edits that were simultaneously applied to the same line of5

code can conflict with each other.

1.1. Background
Manual resolution of such conflicts is usually challenging and time-consuming.

A prior study [49] shows that 56% of developers deferred resolving a merge con-
flict due to various reasons (e.g., the complexity, large size, or big number of10

locations of conflicting code). In the period of time between conflicts occur and
they get resolved, conflicts can grow and become more difficult to resolve [49].
Vale et al. [68] identified factors that make conflicts hard to solve, including the
number of conflicting lines of code, the number of conflicting chunks, the number
of lines of code changed, and the number of files changed. By conducting surveys15

with developers, Costa et al. [21] showed that the developer performing a merge
might not fully understand the changed code or the rationale behind the change,
or may not have the expertise to determine the impact of the change. Nelson et
al. [49] interviewed 10 software developers, and revealed that developers need
better tools to facilitate the understanding and resolution of merge conflicts. All20

these studies motivated us to explore new ways of automatic conflict resolution.

Master branch

New-feature branch

”git merge
new-feature”

Local version

Remote version

A merged version
with conflicts

reported

Figure 1: Developers use textual merge (e.g., git-merge) to merge branches and reveal conflicts

As illustrated in Figure 1, developers typically adopt text-based tools (e.g.,
git-merge [1]) to tentatively merge the latest version of their own branch (i.e.,
local version (L)) with the latest version of a specified branch (i.e., remote
version (R)), and to detect textual conflicts in this process. Because such25

tools treat programs as plain text, they can merge the code in ways that
are syntactically or semantically incorrect, due to code mismatches between
branches [19, 50, 64]. To improve over textual merge, researchers proposed
tools that analyze the syntactic structures of programs, to better detect and
resolve conflicts [13, 12, 71, 65]. For instance, JDime [12] matches Java code30

based on abstract syntax trees (ASTs). It conducts tree-based merge instead of
text-based merge for each matching node pair, to better align code and integrate
as many edits as possible between branches.

Existing tools resolve conflicts by integrating edits with the best effort, but
they overlook the preferences of developers. Two recent studies show that when35

resolving conflicts, instead of merging edits from both branches, developers of-
ten keep edits from the local (L) or remote (R) version [69, 27]. Specifically,
Yuzuki et al. [69] examined 779 Java merge conflicts, and found that developers
resolved 99% of conflicting methods by keeping only one of the conflicting ver-
sions. Similarly, Ghiotto et al. [27] inspected 616 textual conflicts; they observed40

that developers resolved 56% of cases by keeping only the L or R version. As the

2

studies were done by different researchers on distinct datasets and the adopted
granularity (method vs. line) varies, the reported percentages are different.

…
<version>1.8.1</version>
…

…
<version>1.9.7</version>
…

…
<version>1.9.3</version>
…

…
<<<<<<< HEAD

<version>1.9.7</version>
=======

<version>1.9.3</version>
>>>>>>>

…

Base

Local version Remote version

Conflicting
Chunk

…
<version>1.9.7</version>
…

Resolved version (the same as local)

“git merge …”

Figure 2: Versions related to a merge conflict

Figure 2 shows an exemplar conflict manually resolved by developers. For
this example, L and R simultaneously updated the version number of a library45

dependency in distinct ways. As a result, the text-based merge (e.g., git-
merge) reveals a conflicting chunk, which uses the format “<<<<<<< HEAD
... ======= ... >>>>>>>” to mark the conflicting edits between versions.
To resolve the conflict, developers simply picked the edit from one version (i.e.,
L) instead of trying to combine the branch edits somehow.50

1.2. Motivation
Generally speaking, developers resolve conflicts via three main strategies:

choosing the local version while discarding the remote one (KL), choosing the
remote version while discarding local (KR), or modifying edits from either or
both branches for edit integration (ME). Inspired by the two studies mentioned55

above, we wanted to create a novel approach that resolves merge conflicts by
considering developers’ preferences. As our new approach predicts the resolu-
tion strategy for any given conflict, we expect it to help developers in two ways.
First, when it correctly predicts the KL or KR strategy, the approach can auto-
matically apply the strategy and resolve the conflict. This will save developers60

time and manual effort, which would have been spent on understanding and re-
solving that conflict. The effort savings provided by this automatic prediction
are potentially very high, since past evidence shows that the majority of con-
flicts get resolved by KL and KR [69, 27]. Second, when our approach predicts
the ME strategy, it reminds developers to carefully inspect the local and remote65

branches, in order to cautiously handle the given conflict.

3

1.3. Our Research
To explore the feasibility of creating a predictor for conflict-resolution strate-

gies, we first did an empirical study to characterize the conflicts in software
version history that get resolved with different strategies. We gathered 15,75870

conflicts from 100 open-source software repositories, and studied 12 features to
characterize each conflict from different perspectives. Our statistical analysis
shows a strong correlation between the resolution decisions of developers and
all features, indicating a strong potential for successfully building a resolution
predictor.75

Resolution
Strategy

(KL/KR/ME)
Local
Version

Remote
Version

Software
Repository

Local
Version
Remote
Version

Software
Repository

Features

(1) Size of chunk
(2) Size of local version
(3) Size of remote version
(4) File type
(5) # of conflicting chunks
(6) # of conflicting files
(7) # of commits before local version
(8) # of commits before remote version
(9) Data difference between local and remote
(10) # of commits by the owner of local version
(11) # of commits by the owner of remote version
(12) # of commits by the resolver of conflict

Random
Forest

Phase I :Training

Feature Extraction (see above) Classifier
Phase II :Testing

Resolution
Strategy
Resolved
version
(for KL or KR)

Feature Extraction

Training
Data

Testing
Data

Figure 3: RPredictor has two phases: training and testing

Leveraging the 12 features revealed by our study, we designed and imple-
mented an approach—RPredictor—to automatically predict resolution strate-
gies. As shown in Figure 3, RPredictor has two phases: training and testing.
In Phase I, RPredictor extracts features for each conflict in a set of merge
conflicts that were already resolved in the past, and trains a three-class random80

forest (RF) classifier. In Phase II, RPredictor takes in any new conflict to-
gether with the software repository holding that conflict, extracts features, and
applies the trained classifier to recommend a strategy. When the strategy is KL
or KR, RPredictor also outputs the resolved version.

To evaluate RPredictor, we conducted large-scale experiments with 74,86185

conflicts extracted from the version history of 482 open-source projects. We ap-
plied RPredictor to perform both within-project and cross-project prediction
tasks. For the within-project setting, in each repository, we used the oldest 90%
of resolved conflicts to train RPredictor and the remaining 10% of resolved
conflicts for testing. RPredictor predicted resolutions with 63% F-score. For90

the cross-project setting, we performed 10-fold cross validation. Namely, we di-
vided the 482 software repositories evenly into 10 folds. In each experiment, we

4

leveraged the conflict data in nine folds for training and used the conflict data
from the remaining fold for testing. We repeated the experiment 10 times, with
each experiment using a different fold for testing. RPredictor recommended95

resolutions with 46% F-score.
We also evaluated the sensitivity of RPredictor to different amounts or

ages of training data, and to different machine learning (ML) algorithms. We
found that as more training data is provided, RPredictor’s effectiveness either
increases or stabilizes; nevertheless, it does not change consistently with the age100

of training data. Compared with other ML algorithms, random forest leads to
the best effectiveness of RPredictor. Finally, we designed a customizable vari-
ant, RPredictorv, which allows developers to customize how conservatively
they want RPredictorv to make its predictions, i.e., how inclined it should be
to predict the ME resolution, to reduce the ratio of incorrectly predicted KL or105

KR. For a highly conservative setting (94% C-score), RPredictorv achieved
34% effort savings; making RPredictorv less conservative but keeping its con-
servativeness score (C-score) over 80%, we got RPredictorv to achieve up to
64% effort savings. We made the following contributions in this paper:

• A novel empirical study of 12 characteristics of 15,758 conflicts, to under-110

stand their correlation with resolutions KL, KR, or ME.

• A novel tool RPredictor, that leverages machine learning (ML) to pre-
dict the resolution strategy for a given conflict.

• A comprehensive evaluation to assess the prediction effectiveness of RPre-
dictor, with 74,861 conflicts from 482 Java open-source repositories.115

• An evaluation of RPredictor’s sensitivity to different configurations re-
lated to ML, including (1) the ratio of training and testing data, (2) the
balanced or unbalanced data distribution among resolution strategies, (3)
the age of training data, and (4) the choice of learning algorithms.

• A customizable variant RPredictorv, which enables developers to choose120

more or less conservative results at the trade-off of lower or higher effort
savings, respectively.

2. Dataset Construction

Ghiotto et al. [27] recently conducted an empirical study on merge conflicts,
and created a dataset of conflicts from 2,731 GitHub repositories. To study125

developers’ preferences on conflict resolution and to explore new approaches of
resolution prediction, we decided to create our datasets based on their data
because of its comprehensiveness and representativeness.

To create the dataset, Ghiotto et al. first used the GitHub API to select
1,997,541 projects. Then they collected information about each project such as130

the last update date, the size of its development team, and the code size. Next,
they selected all Java projects that have at least one commit during January

5

2015 and March 2016. A project is considered a Java project if the percentage
of source code written in Java is greater than that of code written in any of the
other languages. Finally, they discarded the projects that were forks of other135

projects in the dataset or had no conflict reported by git-merge in Java files for
any merge commits. This led to 2,731 projects with 175,805 conflicting chunks.

For our study, we downloaded Ghitto’s dataset and refined it by taking two
steps. First, we removed the projects whose developers resolved conflicts by tak-
ing only one or two major strategies e.g., jsoup [7] and platform_frameworks_base [4]).140

Namely, if a project (1) has at least 50% of conflicts resolved via a single strategy
(KL, KR, or ME) or (2) never uses a certain strategy (e.g., KL), we remove the
project. In this way, we ensured that each of the remaining repositories had a
relatively balanced distribution of conflicts among KL, KR, and ME. After this
step, 609 projects remained in our dataset (e.g., XCoLab [5] and jgralab [6]).145

Second, we removed the projects whose codebases were no longer available on
GitHub, and our final corpus became 582 projects. Table 1 shows some char-
acteristics of the 582 software repositories. As shown in the table, each project
involves at least 2 developers and at most 426 developers, with the mean value
25 and standard deviation 43. Each repository has at least 24 commits, and at150

most 190,851 commits. In each repository, there are 2–22,020 merging scenar-
ios, while the number of conflicting chunks varies in 5–5,114. All these numbers
imply that the software projects are not toy examples; many of them are large or
complex projects involving many developers and having long version histories.

Table 1: Characteristics of the 582 software repositories included by our dataset
Min Max Mean Standard Deviation

Number of Developers 2 426 25 43
Number of Commits 24 190,851 2,820 9,022

Number of Merges 2 22,020 323 1,045
Number of Chunks 5 5,114 156 368

58

366

139

19
0

50

100

150

200

250

300

350

400

(1, 10] (10, 100] (100, 1,000] (1,000, 10,000]

N
um

be
r o

f P
ro

je
ct

s

Number of Chunks
Figure 4: Distribution of conflicting chunks among the 582 projects

Moreover, we analyzed the distribution of conflicting chunks among projects.155

As shown in Figure 4, 58 out of the 582 projects have 2–10 conflicting chunks in
version history; 366 projects have 11–100 chunks; 139 have 101–1,000 chunks;
and 19 projects have over 1,000 chunks. Such a distribution implies that some
projects contribute a lot more chunks than the others, and may bias our exper-

6

iment results. However, in total the dataset includes 90,619 conflicting chunks,160

while the largest number of conflicting chunks contained by any single project
is 5,114. It means that there is no project dominating the whole dataset, so the
impact of any potential bias is limited.

As shown in Table 2, after refining the original dataset of Ghitto et al., we
obtained 582 software repositories. Among the 90,619 conflicts contained by165

these repositories, there are 32,065, 24,423, 34,131 conflicts separately resolved
via KL, KR, and ME.

We randomly sampled 100 repositories in the 582 repositories, to conduct
a characterization study of conflicts (see Section 3). This sample set includes
15,758 conflicts, among which 5,519 conflicts were resolved via KL, 4,357 con-170

flicts were resolved via KR, and 5,882 conflicts were resolved via ME. Based
on the characterization study, we created RPredictor, and evaluated the tool
using all data from the remaining 482 repositories. By making observations on
a subset of data and assessing new approaches on the remaining data, we can
examine whether the insights gained from some data are generalizable to other175

unseen data.

Table 2: The datasets used in our research
of Repositories # of Conflicts resolved by

KL KR ME Total
Data used in our
characterization study 100 5,519 4,357 5,882 15,758

Data used in the tool
evaluation 482 26,546 20,066 28,249 74,861

Total 582 32,065 24,423 34,131 90,619

3. Our Characterization Study

We characterized all resolved conflicts in the randomly sampled 100 reposi-
tories by defining and measuring 12 features. We defined these features based
on the insights we learnt from prior studies [27, 49, 16, 68], concerning factors180

that may impact developers’ decisions on conflict resolution. We organized the
features into four categories: (C1) content of the merge conflict, (C2) the sce-
nario in which the conflict happened, (C3) software evolution that led to the
conflict, and (C4) experience of the developer(s) involved in the conflict. We
describe them in more detail below.185

C1. Conflict Content: We hypothesize that developers often observe the
conflict content when they try to resolve a conflict [27, 49, 16, 68]. We defined
four features to characterize the content of a conflicting chunk:

F1. Size of Chunk counts the lines of code (LOC) contained by any given
conflicting chunk.190

F2. Size of Local Version counts the LOC between “<<<<<<< HEAD” and
“=======”. Namely, for each conflicting chunk, it counts the unique code
coming from the local version.

7

F3. Size of Remote Version counts the LOC between “====” and “>>>>>>>”.
Namely, for each chunk, it counts the unique code derived from remote.195

F4. File Type reflects the type of the file containing the conflicting chunk.
Different resolutions may be popular in different types of files.

Notice that F1 > F2 + F3, because a conflicting chunk consists of (1) the unique
code from L and R and (2) some common code (e.g., program context) shared
between versions. We believe that when developers resolve merge conflicts, the200

surrounding context is important for them to decide (i) which branch edits fit
better and (ii) how to integrate branch edits into the context. Thus, both the
conflicting edits and surrounding context can influence developers’ resolution
strategies, and we included F1–F3 into our study.
C2. Merging Scenarios: The complexity of a merging scenario (i.e., the205

scenario where git-merge is applied to merge two branch versions) could make
developers defer their responses to conflicts [27, 49, 16, 68]. We defined two
features to capture the complexity:

F5. Number of Conflicting Chunks counts the conflicting chunks reported
by git-merge for a merging scenario .210

F6. Number of Conflicting Files counts the number of conflicting files in
a merging scenario.

C3. Evolution of Changes: It is possible that for a given conflict, how
local and remote versions separately evolved can influence developers’ resolution
strategies [49, 16]. We hypothesize that branches with longer history are less215

likely to be discarded, and defined the following three features accordingly:

F7. Number of Commits before Local counts the commits or versions
standing between the base and local versions, on the branch where the
local version resides.

F8. Number of Commits before Remote counts the commits or versions220

standing between the base and remote versions, on the branch where the
remote version resides.

F9. Date Difference between Local and Remote counts the time interval
(i.e., days) between the check-in dates of local and remote. We hypoth-
esized that an increasing number of days between the check-in dates of225

local and remote versions can make a conflict harder to solve, and thus
may influence developers’ decisions for its resolution.

C4. Developer Experience: The experience of developers can considerably
impact how they understand and resolve conflicts [49, 16, 68]. We hypothesize
that the number of historical commits checked in by a developer can reflect230

his/her experience with the software project. We extracted the user IDs of
developers, and defined the following three features:

8

F10. Number of Commits by The Owner of Local: If a developer
checked in the local commit for the current merging scenario, we consider
that developer as the owner of local. While multiple developers might235

contribute changes to the local branch, we assign the ownership of local
version to the last committer. This is because committers often review all
existing code (including other developers’ edits) and their modifications
before committing changes. This feature counts the commits checked in
by the owner of local, before that developer committed the local version.240

F11. Number of Commits by The Owner of Remote: If a developer
checked in the remote commit for the current merging scenario, we con-
sider that developer as the owner of remote. When multiple developers
contribute changes to the remote branch, we assign the ownership of re-
mote version to the last committer. This is because the last committer245

typically reviews all existing code and his/her own changes before check-
ing in the commit. This feature counts the commits checked in by the
owner of remote, before that developer committed the remote version.

F12. Number of Commits by The Resolver of Conflict: If a developer
checked in the merging commit with conflict resolution for the current250

merging scenario, we consider that developer as the resolver of conflict.
We believe that the resolution strategies vary with resolvers. In reality,
to predict developers’ resolution strategy for a given conflict, it is hard
to know beforehand who will resolve the conflict. However, it is still use-
ful to explore the prediction power of this feature, because the potential255

predictors-to-build can take in manually entered resolver’s user ID to pre-
dict the resolution strategy for a specified conflict. This feature counts the
commits checked in by the developer who resolved a given conflict, before
that conflict resolution.

To study whether these 12 features impact developers’ resolution strategies, we260

applied statistical analysis to compare the values of these features for conflicts
separately resolved by KL, KR, and ME. As mentioned in Section 2, in this
study, we used in total 15,758 conflicts from 100 randomly sampled repositories.

3.1. Statistical Analysis via H Test
Among the 12 features mentioned above, there are 11 features (except F4)265

that have numeric values. For each of these features Fi (i ∈ [1, 12], i ̸= 4), we
measured its value for each conflict. We separated merge conflicts into three
groups, according to the resolution strategies applied to them. We use CL to
refer to the conflicts resolved by KL, use CR to refer to the conflicts resolved by
KR, and use CM for those resolved by ME.270

To study whether any of these features can be used to predict developers’
resolution strategies, we applied the Kruskal-Wallis H test [46, 43, 8]; it is a
statistical test to decide if three or more groups of samples come from the same
distribution on a variable of interest (e.g., chunk size or number of conflicts). H

9

test is a non-parametric test, as it does not assume a normal data distribution275

(none of our studied features follow a normal distribution). For each group
of samples, H test sorts data into ascending order, assigns ranks to the sorted
data points, and thus converts the given values into their ranks. Namely, in the
conversion process, the smallest value gets a rank of 1, the next smallest gets a
rank of 2, and so on. Among the given three or more sample groups, H test is280

applied to validate the following hypotheses:

• H0: The mean ranks of different groups are the same.

• H1: The mean ranks of different groups are not the same.

Table 3: The statistical analysis results for F1–F3 and F5–F12
Fi

Mean Ranks P-value
CL CR CM

F1. Size of Chunk 25 26 72 0.000046
F2. Size of Local Version 11 13 35 0.000093
F3. Size of Remote Version 14 12 37 0.000129
F5. Number of Conflicting Chunks 55 61 29 0.000000
F6. Number of Conflicting Files 24 28 16 0.000000
F7. Number of Commits before Local 62 62 43 0.000000
F8. Number of Commits before Remote 91 138 96 0.000000
F9. Date Difference between Local and Remote 5 5 4 0.000055
F10. Number of Commits by The Owner of Local 655 558 603 0.000051
F11. Number of Commits by The Owner of Remote 530 530 548 0.002683
F12. Number of Commits by The Resolver of Conflict 621 540 584 0.010751

Table 3 presents the H test results for all features except F4. For any fea-
ture Fi, a p-value lower than 0.05 implies that the groups (i.e., CL, CR, and285

CM) are from significantly different data distributions, which means that the
corresponding feature could help predict developers’ resolution strategies. As
shown in the table, all of the 11 features have p-values lower than 0.05; thus,
we decided to use these features to train a resolution predictor in Section 4.

Finding 1: The H test shows that all 11 numeric features (F1–F3 and F5–
F12) of conflicting chunks can help predict developers’ resolution strategies.290

3.2. Statistical Analysis via Chi-Square Test
F4 is different from the other features, because it is a categorical variable

to characterize file types for conflicts, while the other features are numeric vari-
ables to count numbers related to a given conflict. To study whether file types
help predict developers’ resolution strategies, we decided to use the chi-square295

test [54]—a statistical test applicable to sets of categorical data, to evaluate how
possibly any observed difference between the sets happened by chance. Specif-
ically, in our study, after extracting all file-type information for conflicts, we
clustered the file types into two big categories: source-code files and non-code
files. We then counted the frequency of each category for each resolution strat-300

egy to obtain a contingency table (see Table 4). Source-code files include files
written in any programming language, such as Java and Python; non-code files
include all other kinds of files, such as configuration files and documentation.

Notice that we decided not to use file types as they are to create the contin-
gency table for two reasons. First, we observed 96 file types in the 100 studied305

10

Table 4: Data distribution of conflicts between the two file categories
File Category # of Files in Each Group Total

CL CR CM

Source-Code File 3,930 3,375 4,565 11,870
Non-Code File 1,591 983 1,319 3,893

Java projects. Among those types, Java is the biggest one and covers thousands
of conflicts, while many rare file types only cover one or two conflicts. Such an
extreme unbalanced conflict distribution among file types can make our statis-
tical analysis useless or even misleading. To ensure the relatively balanced data
distribution across categories, we decided to create the 2 big categories out of 96310

file types. Second, if we used the file types as they are, our statistical analysis
results may be limited to the 96 file types we studied, but not generalize well
to larger datasets that have a lot more file types. Clustering raw file types into
two big categories helps ensure the generalizability of our study results, because
the two big categories remain the same no matter how many more concrete file315

types are included by larger datasets.
We defined the following hypotheses for our chi-square test:

• H0: No association exists between file categories and resolution strategies.

• H1: There is association between file categories and resolution strategies.

Our statistical analysis results have chi-square = 77.5874, and p = 0.0000. The320

results imply that file categories are related to developers’ resolution strategies,
so we can exploit F4 to train a resolution predictor (Section 4).

Finding 2: The Chi-square test shows that the file categories of conflicting
chunks (F4) can help predict developers’ resolution strategies.

4. Approach

Our characterization study (see Section 3) shows the feasibility of training325

a machine-learning model to predict developers’ resolution strategies for con-
flicts. Therefore, we designed and implemented a new approach RPredictor.
As shown in Figure 3, RPredictor has two phases: training and testing.
Phase I analyzes the conflicts already resolved by developers to train a three-
class classifier. Phase II takes a merge conflict from a software repository, and330

leverages the trained classifier to predict whether developers will resolve it via
KL, KR, or ME. If KL or KR is predicted, in addition to outputting the res-
olution strategy, RPredictor also outputs the resolved version to automate
conflict resolution and thus improve programmer productivity. In both phases,
RPredictor extracts 12 features for each conflict. For implementation, we335

used scikit-learn [55]—a Python machine-learning library to train and test a
classifier. The scikit-learn library features various classification, regression, and
clustering algorithms. By invoking APIs provided by the library, RPredictor
uses random forest (RF) to train its three-class classifier.

Because 11 of the 12 features are numeric variables (i.e., F1-F3 and F5-340

F12), we provided their numeric values as inputs to RPredictor. One feature

11

(F4) is categorical, with two category labels as “source code file” and “non-code
file”. To provide numeric values to RPredictor for F4, we applied one-hot
encoding [29] for category-to-vector conversion. Namely, we used the vector [1,
0] to represent the first category, and used [0, 1] to represent the second.345

5. Evaluation

We conducted a variety of experiments to investigate the following seven
research questions (RQs):

• RQ1: How effectively can RPredictor predict developers’ resolutions
in the within-project setting?350

• RQ2: How effectively can RPredictor predict developers’ resolutions
in the cross-project setting?

• RQ3: How effectively can RPredictor predict developers’ resolutions
given projects with unbalanced distributions of resolution strategies?

• RQ4: How sensitive is RPredictor to the amount of training data?355

• RQ5: How sensitive is RPredictor to the age of training data?

• RQ6: How sensitive is RPredictor to the adopted machine-learning
algorithm?

• RQ7: How sensitive is RPredictorv to different prediction thresholds?

This section will first introduce our evaluation metrics (Section 5.1), and then360

present our experiments as well as the results for each research question (Sec-
tions 5.2–5.8).

5.1. Evaluation Metrics
In our experiments, we executed our studied techniques to obtain a pre-

diction for each one of the merge conflicts in our studied dataset. As ground365

truth for each conflict, we observed the resolution strategy employed by the
developer that resolved it in our dataset. We then assessed the effectiveness of
a technique by comparing its prediction to the ground truth for each conflict,
applying multiple metrics. To facilitate discussion, in this section, we index the
three conflict resolution strategies and refer to them as Si(i ∈ [1, 3]). Namely, S1370

refers to KL (keep the local version); S2 refers to KR (keep the remote version);
S3 refers to ME (resolution with manual edits). We defined and calculated the
following metrics to evaluate effectiveness:

Precision (Pi) measures, among all the conflicts labeled with Si by a tech-
nique, what ratio of them were actually resolved by Si.375

Pi =
of conflicts correctly labeled as ”Si”

Total # of conflicts labeled as “Si”
(1)

12

Recall (Ri) measures, among all conflicts that were resolved by Si, what
ratio of them were labeled by a technique as Si.

Ri =
of conflicts correctly labeled as “Si”

Total # of conflicts that were resolved via Si
(2)

Both precision and recall vary within [0%, 100%]. The higher, the better.
F-score (Fi) is the harmonic mean of precision and recall. It provides a

way to measure a model’s accuracy based on precision and recall. F also varies380

within [0%, 100%]. The higher value we get, the better.

Fi =
2× P ×R

P +R
(3)

Aggregated (Overall) metrics (P, R, F): With the above effectiveness
metrics computed for each resolution strategy, we further evaluated the over-
all effectiveness of a technique by computing the weighted average among all
strategies. Formally, if we use Γ to represent P or R, and use ni to represent385

the number of testing samples in Si, then the overall effectiveness in terms of
precision and recall can be computed as

Γoverall =

∑3
i=1 Γi ∗ ni∑3

i=1 ni

(4)

Finally, the overall F is computed with:

Foverall =
2× Poverall ×Roverall

Poverall +Roverall
(5)

Conservativeness Score (C) or C-score: We defined this metric because
different prediction mistakes have different consequences. If a conflict resolved390

by KL or KR is incorrectly predicted as ME, the technique makes a conservative
mistake: it misses the opportunity of saving developers’ manual effort, but does
not mislead developers to blindly take resolution suggestions. However, if a con-
flict resolved by ME is incorrectly predicted as KL or KR, the technique makes
a more serious mistake: it automatically resolves the conflict using a different395

strategy than what the developer would have preferred, and thus produces an
incorrectly merged version. We created a C metric to measure the ratio of pre-
dictions that are conservative, i.e., that do not cause any incorrect automatic
resolution. Conservative predictions include (1) correct predictions, and (2) any
conflict resolved via KL or KR but labeled as ME. C scores range within [0%,400

100%]; the higher, the better.

C =
of conflicts conservatively labeled

All predictions (6)

5.2. RQ1: Effectiveness of Within-Project Prediction
For each software project in our dataset, we leveraged 90% of the oldest

resolved conflicts to train RPredictor, and then used the remaining 10% of

13

Table 5: The prediction counts for RPredictor and Baseline in the within-project setting
Ground # of conflicts RPredictor Baseline

Truth Training Testing KL KR ME KL KR ME
KL 23,610 2,936 1,815 318 803 1,002 977 957
KR 18,087 1,979 343 931 705 678 649 652
ME 25,472 2,777 361 356 2,060 984 892 901

Total 67,169 7,692 2,519 1,605 3,568 2,664 2,518 2,510

Table 6: Effectiveness measurements for within-project prediction
of conflicts RPredictor Baseline

Training Testing P R F C P R F C
KL 23,610 2,936 72% 62% 67% - 37% 34% 35% -
KR 18,087 1,979 58% 47% 52% - 25% 32% 28% -
ME 25,472 2,777 58% 74% 65% - 35% 32% 34% -

Overall 67,169 7,692 63% 62% 63% 82% 34% 33% 33% 54%

resolved conflicts to test RPredictor. We intentionally used older data for405

training and newer data for testing. This is because such a setting can mimic the
real-world scenarios, where RPredictor can only refer to a project’s history
data to suggest resolutions for future conflicts of that project.

5.2.1. Baseline
No prior work predicts developers’ resolution preferences, so we could not410

compare RPredictor with any existing tool. However, we were still interested
in how RPredictor compares with a weighted random predictor. Thus, we
created a baseline technique. We assumed that baseline somehow knows the
ratios of conflicts separately resolved via KL, KR, or ME, and randomly predicts
a label each time based on those ratios. As shown in Table 5, in the test set,415

there are 2,936, 1,979, and 2,777 conflicts separately resolved via KL, KR, and
ME. Therefore, given a conflict, baseline predicts KL with a 38% probability
(i.e., 2936/(2936+1979+2777)), and predicts KR and ME with 26% and 36%
probabilities, respectively. Notice that the baseline technique is stronger than
a naïve random classifier that predicts all resolutions with equal possibilities420

(i.e., 33%). In reality, it is also hard for any classifier to foresee the conflict
distribution among all strategies. We made such a strong assumption to ensure
that baseline is nontrivial, and to check whether RPredictor outperforms it.

5.2.2. Comparison with Baseline
Table 5 counts the predictions of both RPredictor and baseline for in-425

dividual resolution strategies. According to the table, RPredictor correctly
labeled 1,815, 931, and 2,060 conflicts with KL, KR, ME, respectively. Mean-
while, baseline correctly labeled only 1,002, 649, and 901 conflicts with KL,
KR, ME, respectively. These observations mean that RPredictor predicts
resolutions with much higher accuracies than baseline.430

With the numbers reported in Table 5, we further measured effectiveness for
both techniques using the metrics described in Section 5.1. As shown in Table 6,
RPredictor outperformed baseline for all metrics. For instance, for conflicts
resolved by KR, RPredictor achieved 58% precision, 47% recall, and 52%
F-score; meanwhile, baseline only obtained 25% precision, 32% recall, and 28%435

F-score. RPredictor showed an overall effectiveness of 63% precision, 62%

14

Table 7: Effectiveness measurements for cross-project prediction
Experiment Id RPredictor Baseline

(Testing Fold #) P R F C P R F C
1 46% 46% 46% 77% 34% 34% 34% 59%
2 49% 51% 50% 81% 35% 35% 35% 56%
3 47% 47% 47% 79% 33% 34% 33% 58%
4 50% 50% 50% 75% 34% 35% 34% 57%
5 41% 41% 41% 64% 38% 35% 36% 60%
6 42% 44% 43% 75% 34% 33% 34% 55%
7 44% 47% 46% 78% 36% 34% 35% 53%
8 47% 49% 48% 79% 36% 35% 36% 55%
9 50% 50% 50% 77% 34% 34% 34% 57%

10 44% 48% 46% 76% 34% 32% 33% 52%
Overall (All folds) 46% 47% 46% 76% 34% 34% 34% 57%

recall, 63% F-score, and 82% C-score; in contrast, baseline provided an overall
effectiveness of 34% precision, 33% recall, 33% F-score, and 54% C-score. Both
techniques worked more effectively to predict KL and ME, than to predict KR.
This may be because there are fewer conflicts in the training set that were440

actually resolved by KR.
Finding 3: For within-project prediction, RPredictor’s overall effectiveness
measurements include 63% precision, 62% recall, 63% F-score, and 82% C-
score. It outperformed baseline.

5.3. RQ2: Effectiveness of Cross-Project Prediction
In this experiment, we evaluated the real-world scenarios where a given

project has little version history for RPredictor to leverage. In such sce-445

narios, RPredictor can train a classifier with the conflict data from other
repositories, and use that classifier to predict resolutions for the given project.
We conducted 10-fold cross validation to evaluate RPredictor’s effectiveness.
Namely, we divided the 482 software projects randomly into 10 groups roughly
evenly. For each group Gi(i ∈ [1, 10]), we ran an experiment by using the con-450

flict data in the remaining nine groups for training, and adopting the data in
Gi for testing. We calculated the effectiveness measurements for each of the 10
runs, and then computed the aggregated metrics of P, R, F, C among all runs.

5.3.1. Baseline
Similar to what we did for RQ1 (Section 5.2.1), we also created a weighted455

random classifier for cross-project prediction. In each of the 10 experiments
mentioned above, baseline did not involve any training. Instead, it randomly
assigned labels to conflicts based on the conflict distribution among three strate-
gies in the test set. By empirically comparing RPredictor with baseline, we
explored how RPredictor improves over weighted random prediction.460

5.3.2. Comparison with Baseline
As shown in Table 7, RPredictor outperformed baseline for all metrics

in all 10 experiments. By aggregating our measurements for all folds, we got
the overall effectiveness of RPredictor as 46% precision, 47% recall, 46% F-
score, and 76% C-score. Meanwhile, the overall effectiveness of baseline is 34%465

15

precision, 34% recall, 34% F-score, and 57% C-score. Due to the space limit, we
do not present tools’ effectiveness measurements for each resolution strategy.
However, when we checked the detailed results for each strategy, we noticed
that both tools predicted ME more accurately than predicting the other two
strategies. In particular, RPredictor always predicted ME more accurately470

than baseline; in 8 out of 10 experiments, RPredictor suggested KL more
accurately than baseline; in 9 out of 10 experiments, baseline suggested KR
more accurately than RPredictor.

Finding 4: In cross-project prediction, RPredictor achieved 41%–50% pre-
cision, 41%–51% recall, 41–50% F-score, and 64%–81% C-score. It outper-
formed baseline for all studied folds.

5.3.3. Comparison between Cross-Project and Within-Project Prediction475

We also compared RPredictor’s cross-project prediction results (see Ta-
ble 7) against its within-project prediction results (see Table 6). Generally
speaking, both experiments have very similar data-splitting methodologies: they
both use 90% of data (i.e., conflicts or projects) for training and use 10% of data
for testing. Nevertheless, RPredictor predicted resolutions more effectively480

in the within-project setting, for all metrics. This may be because it is easier to
predict the future resolution strategies of developers based on their resolution
decisions for old conflicts. In contrast, it may be relatively harder to predict
these developers’ resolution strategies based on the resolution decisions made by
other developers in other projects. We also noticed that baseline achieved very485

similar effectiveness for the within-project and the cross-project settings. This
is because the baseline technique does not have a training step. Its predictions
are purely based on the random guesses derived from distributions of resolution
strategies in test sets. No matter what data distribution we have for any test
set, the random guesses typically achieve 33-34% overall F-scores.490

Finding 5: RPredictor predicted resolutions more effectively in the within-
project setting than in the cross-project setting.

5.4. RQ3: Prediction Effectiveness on Unbalanced Data
As mentioned in Section 2, we used the conflict data of 100 repositories to

characterize conflicts, and adopted the conflict data of another 482 reposito-495

ries to train and test RPredictor. All these 582 repositories have balanced
distributions of different resolution strategies, which imply that developers did
not show strong personal biases towards certain strategies; instead, they might
decide upon resolutions solely based on branch edits, program context, and
software evolution. To further investigate how effectively RPredictor works500

given unbalanced data, we conducted another experiment. Specifically, among
the 2,122 (i.e., 2,731-609) repositories discarded in Section 2 due to the unbal-
anced distribution of different resolution strategies, we picked the most popular
100 repositories based on their star counts on GitHub, and experimented with
them for both within-project and cross-project prediction. To facilitate discus-505

sion, Figures 5 and 6 separately visualize the overall distributions of resolution

16

strategies in the 582 balanced repositories and 100 unbalanced ones. As shown
in Figure 6, the unbalanced data has the majority of conflicts (61%) resolved via
KL, and least conflicts (15%) resolved via ME. Meanwhile, the balanced data
has 35%, 27%, and 38% of conflicts separately resolved via KL, KR, and ME.510

KL, 35%

KR, 27%

ME, 38%

Figure 5: The resolution distributions
among 582 balanced repositories

KL
61%

KR
24%

ME
15%

Figure 6: The resolution distributions
among 100 unbalanced repositories

Table 8: RPredictor’s effectiveness of within-project prediction given unbalanced data
P R F C

KL 86% 91% 89% -
KR 79% 76% 77% -
ME 64% 53% 58% -

Overall 81% 69% 74% 86%

5.4.1. Effectiveness of Within-Project Prediction on Unbalanced Data
Similar to what we did for Section 5.2, in each of the 100 repositories with

unbalanced data, we used the oldest 90% of resolved conflicts to train RPredic-
tor and used the remaining conflicts for testing. Table 8 shows our experiment
results. By comparing this table against Table 6, we observed that RPredictor515

worked much better when given unbalanced data for within-project prediction.
Among the 100 repositories, it achieved 81% precision, 69% recall, 74% F-score,
and 86% C-score; all the measurements are higher than those calculated for
the balanced dataset (i.e., 63%, 62%, 63%, 82%). In particular, RPredictor
obtained as high as 91% recall when predicting KL in the unbalanced dataset,520

probably because developers demonstrate very strong biases towards KL in that
dataset and thus make that strategy easier to predict.

Finding 6: For within-project prediction tasks, RPredictor predicted reso-
lutions more effectively in the unbalanced dataset than in the balanced dataset.

5.4.2. Effectiveness of Cross-Project Prediction on Unbalanced Data
As with what we did for Section 5.3, we randomly split the 100 repositories525

into 10 groups with each group having 10 repositories, and performed 10-fold
cross validation. As shown in Table 9, overall, RPredictor achieved 53%
precision, 43% recall, 47% F-score, and 49% C-score. Meanwhile, its overall
metrics in the balanced dataset include 46% precision, 47% recall, 46% F-score,
and 76% C-score (see Table 7). Given unbalanced data, RPredictor obtained530

roughly the same F-score but a much lower C-score than what it did given
balanced data; unbalanced data makes cross-project resolution prediction even

17

harder. Namely, if developers show extreme personal biases towards distinct
resolution strategies in different projects, it can be very challenging to correctly
predict the resolution strategies in one project based on strategies observed in535

other projects. Actually, among the 10 groups of our unbalanced dataset, there
are 4 groups with strong preferences towards KL (i.e., over 50% of conflicts were
resolved via KL) and 3 groups with strong biases towards KR. The classifiers
trained with such unbalanced data predict KL or KR most of the times but
seldom predict ME, although ME is a more conservative strategy than KL and540

KR. Consequently, such classifiers earn much lower conservativeness scores.

Table 9: RPredictor’s effectiveness of cross-project prediction given unbalanced data
Experiment Id P R F C(Testing Fold #)

1 41% 42% 41% 55%
2 63% 44% 52% 47%
3 42% 40% 41% 48%
4 52% 46% 49% 51%
5 44% 37% 41% 52%
6 52% 46% 49% 57%
7 34% 31% 33% 50%
8 38% 30% 33% 38%
9 47% 42% 44% 53%

10 51% 38% 43% 59%
Overall (All folds) 53% 43% 47% 49%

Finding 7: For cross-project prediction tasks, RPredictor predicted reso-
lutions less conservatively in the unbalanced dataset than in the balanced one.

5.5. RQ4: Sensitivity to The Amount of Training Data
In our experiment settings, by default, we typically used 90% of overall

data for training and 10% of data for testing. However, it is unknown how the545

amount of training data can influence RPredictor’s effectiveness. Therefore,
we performed another experiment of within-project prediction, by tuning the
amount of training data in use. Specifically, in the balanced dataset (i.e., 482
repositories), we split the conflict data of each repository into 11 portions evenly
(each portion having the same number of conflicting chunks): p1, p2, ..., p11.550

Here, p1 represents the oldest data portion in history and p11 is the newest one.
We trained and tested RPredictor 10 times, with each of the iterations using
p11 as the testing data but using a distinct set of portions for training. As shown

Table 10: RPredictor’s effectiveness of within-project prediction, when different amounts of
training data are provided in different iterations

Iteration Id Data Portions RPredictor
Training Testing P R F C

1 p10 p11 42% 45% 43% 66%
2 p9, p10 p11 51% 52% 51% 71%
3 p8–p10 p11 54% 55% 54% 72%
4 p7–p10 p11 52% 52% 52% 72%
5 p6–p10 p11 54% 54% 54% 75%
6 p5–p10 p11 55% 56% 56% 75%
7 p4–p10 p11 56% 56% 56% 76%
8 p3–p10 p11 56% 56% 56% 75%
9 p2–p10 p11 56% 56% 56% 75%

10 p1–p10 p11 56% 56% 56% 76%

18

in Table 10, the 1st iteration adopts p10 for training; the 2nd iteration exploits
both p9 and p10 to train RPredictor; the 10th iteration uses 10 portions p1–p10555

in training.
RPredictor’s effectiveness increases or roughly remains the same when

the amount of training data grows. Specifically when only p10 was provided,
RPredictor obtained 42% precision, 45% recall, 43% F-score, and 66% C-
score. During the first three iterations, as the training data increased from560

one portion to three portions, all measurements increased steadily. Meanwhile,
during the last six iterations, while the training data increased from five to ten
portions, RPredictor’s effectiveness stabilized without much change. One
possible reason to explain the observed increase is that when training data is
insufficient, providing more data enables RPredictor to better characterize565

diverse conflicting scenarios and thus better predict resolutions. However, once
the training data is sufficient, offering more data does not necessarily improve
RPredictor’s effectiveness. Consequently, all measurements stabilize. Based
on this experiment, we decided for our other experiments (except for RQ4 and
RQ5), by default, we used 90% of data for training and 10% of data for testing,570

in order to train RPredictor with sufficient data and to observe the best
effectiveness measurements achievable by RPredictor.

Finding 8: RPredictor’s effectiveness improves or stabilizes when more
training data is provided.

5.6. RQ5: Sensitivity to The Age of Training Data
When looking at Table 10, one may be tempted to wonder whether the age575

of training data also influences RPredictor’s effectiveness. Actually, between
different iterations shown in Table 10, both the (1) age and (2) amount of train-
ing data are different. To explore the influence of each factor, we conducted
an additional experiment with the 11 data portions mentioned in Section 5.5
(each portion having the same number of conflicting chunks). In this exper-580

iment, we repetitively trained RPredictor with a distinct data portion but
always tested it with p11. As shown in Table 11, the 1st iteration uses p10—
the youngest portion within [p1, p10]—as the training data; the 2nd iteration
uses p9; the 10th iteration uses the oldest data p10. Because the training data
in each iteration has roughly equal numbers of data points, the comparison of585

effectiveness measurements across iterations reflects the impact of data age.

Table 11: RPredictor’s effectiveness of within-project prediction, when differently aged data
is provided for training

Iteration Id Data Portions RPredictor
Training Testing P R F C

1 p10 p11 43% 44% 43% 66%
2 p9 p11 48% 49% 49% 69%
3 p8 p11 45% 48% 46% 68%
4 p7 p11 42% 43% 43% 74%
5 p6 p11 45% 47% 46% 81%
6 p5 p11 34% 38% 36% 70%
7 p4 p11 37% 41% 39% 69%
8 p3 p11 44% 43% 44% 80%
9 p2 p11 42% 44% 43% 83%

10 p1 p11 39% 42% 41% 63%

19

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Adaboost DT NB RF

P R F C

Within-project

ML
algorithm

Measurements

Figure 7: RPredictor using different ML algorithms for within-project prediction

According to Table 11, as the training data gets older, the effectiveness mea-
surements either increase or decrease, without presenting a consistent change
trend. For instance, in the 1st iteration, RPredictor obtained 43% precision,
44% recall, 43% F-score, and 66% C-score. In the 9th iteration, RPredictor590

achieved a slightly lower precision (42%), the same recall (44%), the same F-
score (43%), but the highest C-score (83%). However, in the 10th iteration, it
acquired the lowest measurements: 39% precision, 42% recall, 41% F-score, and
63% C-score. The phenomena imply that data age does not have a consistently
positive or negative impact on prediction results. The prediction effectiveness595

increased probably because the training data became more similar to the test-
ing data, and decreased probably due to the less similarity between training
and test data. Therefore, both the consistent effectiveness improvements and
stabilized measurements we observed in Table 10 are mainly contributed by the
increase of training data, instead of data aging.600

Finding 9: RPredictor’s effectiveness does not consistently change with
the age of training data.

5.7. RQ6: Sensitivity to The Adopted Machine-Learning Algorithm
When designing RPredictor, we did not know what machine-learning

(ML) algorithm was more suitable. Thus, we experimented with four ML al-605

gorithms in both the within-project and cross-project settings, to observe how
RPredictor’s effectiveness varies with the adopted algorithm. We studied
Adaboost, decision tree (DT), naïve bayes (NB), and random forest (RF). As
mentioned in Section 5.2, for the within-project setting, we used 90% of the
oldest resolved conflicts in each project’s version history for training, and 10%610

of conflicts (the most recent ones) for testing. For the cross-project setting, we
used 10-fold cross validation (as in Section 5.3). In all of our experiments, we
leveraged the ML implementation provided by scikit-learn [55], and used the
default parameter settings for all adopted ML algorithms.

As shown in Figures 7 and 8, RPredictor achieved the highest effective-615

ness when using RF. For within-project prediction, RF obtained 63% precision,
62% recall, 63% F-score, and 82% C-score. DT had lower effectiveness than
RF, but better than the other two alternatives; it obtained 60% precision, 60%

20

0%
10%
20%
30%
40%
50%
60%
70%
80%

Adaboost DT NB RF

P R F C

Cross-project

Measurements

ML
algorithm

Figure 8: RPredictor using different ML algorithms for cross-project prediction

recall, 60% F-score, and 77% C-score. NB was the least effective and got 47%
precision, 46% recall, 47% F-score, and 61% C-score. For cross-project predic-620

tion, RF obtained 46% precision, 47% recall, 46% F-score, and 76% C-score.
Adaboost performed worse than RF; it got 41% precision, 43% recall, 42% F-
score, and 71% C-score. NB achieved the most interesting results. Among the
four algorithms studied, NB acquired the lowest precision (32%), lowest recall
(37%), and lowest F-score (34%); nevertheless, it acquired the highest C-score625

(79%). This is mainly because NB predicted a lot more ME resolutions than
the other algorithms. Comparing the effectiveness of distinct algorithms in both
within-project and cross-project settings, we decided to use RF as the default
ML algorithm in RPredictor because RF often outperformed the others.

Finding 10: Among the four experimented machine learning algorithms, RF
generally outperformed the others when being used in RPredictor.630

5.8. RQ7: Sensitivity to Threshold Setting
In the experiments mentioned above, the highest C-score RPredictor

achieved is 82%. It means that 82% of the resolution strategies recommended
by RPredictor are conservative; in other words, they correctly predict the
developers’ preference, or ask developers to resolve the conflict manually. How-635

ever, some developers may prefer RPredictor to provide lower C-scores (i.e.,
to predict more KL or KR labels) in order to save more effort, even if the predic-
tions are more risky or less precise. Such preferences are meaningful for projects
with very good test suites, in which developers can trust automated testing to
reliably decide the correctness of any program version whose conflicts were auto-640

matically resolved. Other developers may prefer RPredictor to achieve higher
C-scores (i.e., to predict ME more often) in order to avoid prediction errors,
even though the predictions save less effort. Such preferences are important for
projects with very limited test suites, in which developers cannot blindly trust
automated testing to always validate the correctness of programs.645

To give developers more control over RPredictor’s predictions, we created
a configurable variant of RPredictor—RPredictorv, which offers a param-
eter thM so that developers can fine-tune automatic prediction based on their
relative tolerance for incorrect KL or KR predictions.

21

Resolved conflicts
+ software

repositories

RPREDICTORvPhase I: Training

Phase II: Testing

Classifier

pKL

pKR

pME

…

if (pME >= thM)
predict ME

else if (pKL >= pKR)
predict KL

else predict KR

Resolution
Strategy

Resolved
version (for

KL or KR)

New conflicts to
resolve + their

repositories

Figure 9: RPredictorv—our customizable variant of RPredictor, which uses a threshold
thM to fine-tune the prediction results

5.8.1. A Threshold-Based Variant Approach: RPredictorv650

Figure 9 shows our approach for RPredictor’s customizable variant. Simi-
lar to RPredictor, this variant also trains a classifier to predict the resolution
strategy for any given merge conflict. However, this variant now allows its users
to increase (or decrease) its prediction preference for ME. Given a merge conflict
and its related software repository, a classifier generates three predicted likeli-655

hoods: pKL, pKR, and pME . These likelihoods indicate how likely the predictor
believes that the conflict should be resolved via KL, KR, or ME. All likelihoods
vary within [0, 1]; pKL + pKR + pME = 1. The original approach RPredictor
returns its prediction based on the highest likelihood among pKL, pKR, and
pME . In contrast, the customizable variant RPredictorv first compares pME660

with the user-configured threshold thM . As shown in Figure 9, if pME ≥ thM ,
then RPredictorv predicts ME; otherwise, it predicts one of the other two
strategies, the one with the higher likelihood (KL or KR).

In this way, developers can modify thM to tune RPredictorv’s conser-
vativeness. When thM = 0, it predicts all conflicts conservatively as ME. In665

this scenario, developers would not get any incorrect KL or KR predictions,
but they would not benefit from RPredictorv automatically acting on the
KL or KR predictions (i.e., it would not save effort). On the other extreme,
when thM = 1.0, all conflicts are predicted to resolve via either KL or KR. In
this scenario, RPredictorv would save developers high effort (it would au-670

tomatically resolve all conflicts by KL or KR), but some of those KL or KR
resolutions would not be what the developers preferred (they would be incor-
rect predictions). With other values of thM , developers can decide their own
personal middle-ground between these two extreme points.

5.8.2. Experiment with RPredictorv675

To study the trade-offs between F-score, C-score, and the potential effort-
saving by automatic resolution that developers could obtain with RPredictorv,
in this experiment we tuned thM from 0.1 to 1, with 0.1 increments. For each
threshold setting, we applied RPredictorv to perform both within-project and
cross-project prediction. For this section, we defined another metric to measure680

the potential effort-saving by automatic resolution:
Effort-saving (E) Score or E-score measures among all predictions, for

how many of them RPredictorv outputs KL or KR and automatically resolves

22

the conflict. The score is within [0%, 100%].

E =
of conflicts automatically resolved via KL or KR

All predictions (7)

Figure 10 shows RPredictorv’s performance for within-project prediction.685

As thM increased, C-score consistently decreased and E-score increased. F-score
was stable when thM ∈ (0, 0.7]; it decreased as thM increased from 0.7 to 1.
For the most conservative threshold (thM = 0.1), RPredictorv labeled many
conflicts with ME; it only labeled them KL or KR when the predicted likelihoods
were very high (RPredictorv was quite sure about those predictions). In this690

scenario, RPredictorv achieved a C-score of 94%, E-score of 34%, and F-score
of 68%. This shows that RPredictorv can achieve as much as 34% effort
savings (E-score) by also very rarely predicting KL or KR incorrectly (with
very high C-score). For the most liberal threshold (thM = 1.0), RPredictorv

labeled no conflict with ME. Instead, it only produced KL and KR labels to695

automate all resolutions. In such scenarios, RPredictorv incorrectly labeled
many conflicts as KL or KR, applying a strategy that was not preferred by the
developers. Consequently, the achieved C-score was 50%, E-score was 100%, and
F-score was 38%. This option would save all the effort of conflict resolution, but
it would likely require additional mechanisms to detect incorrectly applied KL700

or KR resolutions, e.g., using a very strong test suite that is either manually
crafted or automatically generated (e.g., via good fuzzy testing techniques).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F C E

thM

Measurements

Figure 10: RPredictorv ’s effectiveness measurements for within-project prediction

We believe that other intermediate thresholds would be more popular. Be-
tween thM = 0.1 and thM = 1.0, F-score was stable initially and then decreased.
As thM increased, RPredictorv achieved different trade-offs between precision705

and recall for each strategy. Figure 10 also shows that developers could achieve
increasing effort savings (E-score), at the cost of accepting increasing ratios of
incorrect KL or KR predictions (lower C-scores). However, it is also worth
noting that E-scores grew faster than C-scores fell, which means that multiple
intermediate thresholds may be attractive for different developers. For exam-710

ple, the thresholds in (0, 0.5] achieved up to 64% effort savings with C-scores
no lower than 80%.

23

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F C E

thM

Measurements

Figure 11: RPredictorv ’s effectiveness measurements for cross-project prediction

Figure 11 shows RPredictorv’s performance for cross-project prediction.
As thM increased, C-score decreased first and then stabilized when 0.7 ≤ thM ≤
1; E-score increased first and then stabilized when 0.7 ≤ thM ≤ 1. F-score715

vibrated in the range [37%, 45%] when thM ≤ 0.9, and dropped afterwards. We
saw in RQ2 that RPredictor’s predictions are less effective in the cross-project
setting than in the within-project setting. This is also reflected by Figures 10
and 11, since RPredictorv generally produced a worse trade-off between effort
savings and conservativeness. In cross-project prediction, the most conservative720

threshold (thM = 0.1) provided almost no effort saving, and if we wanted to keep
C-score over 80%, we could only achieve up to 26% effort savings (thM ≤ 0.3).

Finding 11: RPredictorv generally achieved better trade-offs between
effort savings and conservativeness in the within-project setting than in the
cross-project setting. For within-project prediction, RPredictorv could save
up to 63% of efforts by lowering the C-score while keeping it above 80%.

6. Threats to Validity725

Threats to External Validity. Our characterization study investigates 12 candi-
date features, which are defined either based on prior studies or our insights. It
is possible that there are other features (e.g., types of edits in branches) that are
potentially correlated with developers’ resolution strategies, and can be lever-
aged to better predict resolutions. In the future, we plan to define and explore730

more candidate features, so that our characterization study is more representa-
tive. By revealing and incorporating new features, we can also strengthen the
prediction capability of RPredictor. Our study and experiments are done
on Java projects, although the methodology is generally applicable to programs
written in any language. It is possible that the results of our study and evalua-735

tion do not generalize well to programs written in other languages. In the future,
we plan to conduct larger-scale experiments to include non-Java programs.

Threats to Construct Validity. When crawling the owner developers of commits
in software repositories, we assumed that there is one-to-one mapping rela-
tionship between developers and user IDs (i.e., email addresses). Namely, we740

24

assumed that each developer has only one user ID, which is not shared with any
other developer. However, in reality, it is possible that a developer leverages
multiple user IDs when checking in different commits (i.e., one-to-many), while
some developers share a single user ID when committing program changes (i.e.,
many-to-one). Such one-to-many and many-to-one relations between developers745

and user IDs can make our data analysis imprecise. However, we believe that
the corner cases of one-to-many and many-to-one mappings are rare, causing
little impact on our research findings.

7. Discussion

In this section, we discuss various aspects of our approach to further clarify750

its applicability.

7.1. The Benefit of RPredictor’s Recommendations for Developers
Given a merge conflict, RPredictor predicts the resolution strategy, and

even recommends a merged version if the predicted strategy is KL or KR.
Readers may be tempted to underestimate the usefulness of RPredictor, be-755

cause KL and KR seem much simpler to execute than ME. However, we argue
that conflict resolution involves not only resolution implementation, but also
decision-making; RPredictor helps considerably reduce the manual effort on
the decision-making process.

Prior work [49] mentions that 56% of developers have deferred at least once760

when responding to a merge conflict, which makes conflict resolution more com-
plex as time passes; the key challenges that developers have to overcome when
trying to resolve conflicts include (1) understanding the conflicting code, and
(2) getting enough metadata information about the conflict (e.g., who made the
change, why, and when). RPredictor characterizes software conflicts from765

12 distinct aspects, in order to automatically comprehend conflicts and retrieve
metadata information related to those conflicts. Therefore, when RPredictor
correctly predicts KL and KR, developers do not need to go through the painful
process of conflict comprehension and resolution.

As multiple studies [64, 19, 53] show that the majority of conflicts are re-770

solved via KL and KR, RPredictor ’s good precision of predicting KL/KR
can significantly save developers effort, effort that would have otherwise been
spent to manually analyze and resolve such conflicts.

7.2. The Impact of Mispredictions and Developers’ Trust in Automated Recom-
mendations775

If RPredictor predicts ME and requires developers to manually resolve
some conflicts, developers cannot save any manual effort, but it also does not
put any extra effort on those conflicts, either.

In the scenarios when RPredictor incorrectly predicts KL or KR, devel-
opers may need to put extra effort to examine the tool-suggested strategies.780

However, if the test cases in software projects (1) have sufficient coverage, (2)

25

do not conflict with each other across branches, and (3) reliably express the
intended behaviors of merged software, developers do not need to spend more
time reasoning about whether tool-generated resolutions work. Instead, they
can rely on testing to validate automated resolutions.785

Furthermore, developers may choose to manually double-check if they per-
sonally agree with RPredictor’s prediction before applying it, which can re-
duce its ratio of mispredictions. This mode of operation would imply a lower
effort reduction for developers, but it can still be more efficient than reviewing
all the details of the merge conflict.790

At the end of the day, we expect different developers to show different pref-
erences in terms of how liberally they want to directly apply RPredictor’s
recommendations. That is why we proposed a variant of RPredictor in Sec-
tion 5.8, that gives them flexibility to make RPredictor provide predictions
that save higher effort producing more mispredictions, the opposite trade-off,795

or other points in between.
In future work, we will also explore how to use explainable machine learn-

ing approaches to increase the trust of RPredictor’s recommendations for
developers, trying different approaches for explaining why RPredictor is rec-
ommending a particular strategy.800

7.3. Applicability of RPredictor on Less-Balanced Projects
We evaluated RPredictor in a dataset of projects that resolved merge

conflicts in a relatively balanced way, i.e., all decisions were taken with relatively
similar frequencies. We did this intentionally to evaluate RPredictor in the
kinds of projects for which we estimate they would benefit from it most: those805

projects which do not have a very clear typical way to resolve conflicts, i.e.,
those in which no choice is strongly overrepresented.

However, we believe that RPredictor could also benefit projects in which
KL or KR is the typical choice to resolve merge conflicts, i.e., in which that
strategy is chosen the majority of the time. In such cases, developers would also810

benefit from RPredictor, because it will capture this bias in its training and it
will in fact predict resolution strategies with higher accuracy. We performed an
experiment showing RPredictor’s higher accuracy in an unbalanced dataset
in Section 5.4 (RQ3).

The only case of projects that would not benefit as much from RPredictor815

are those which choose ME to resolve their merge conflicts the majority of
the time — since RPredictor’s recommendations are most beneficial when
it predicts KL or KR. However, such situations are less common — past work
[69, 27] showed that KL and KR are the most popular strategies to resolve
merge conflicts.820

7.4. What If A Project Has Little Training Data Available?
When using RPredictor, users do not have to train RPredictor on a

large dataset of software repositories. Instead, for the within-project setting,
they can use all conflicts extracted from one project’s version history for clas-
sifier training, and leverage that trained classifier to predict resolutions for any825

26

new conflicts in the same project. For the cross-project setting, users can sim-
ply use the trained classifier open-sourced on our project website [3], instead
of training any classifier from scratch. In order to help users decide whether
RPredictor should perform within- or cross- project prediction for their cir-
cumstances, we actually ranked the 482 experimented repositories in descending830

order of the number of conflicting chunks they contain in version history. From
that ranked list, we sampled the 1st project (the one with the most conflicts),
the 482th project (the one with fewest conflicts), and 9 projects standing be-
tween at roughly 10%-interval of ranks. Table 12 shows all the sampled 11
projects, the total number of conflicts contained by each project, the number of835

conflicts used for training (i.e., 90% of the total), and the F-scores achieved by
RPredictor for within-project prediction.

Table 12: RPredictor’s F-scores for 11 sampled projects for within-project prediction

Rank Total # of conflicts # of conflicts used for training F-score
1st 5,114 4,603 92%

48th 405 365 58%
96th 150 135 45%

144th 85 77 37%
192th 62 56 27%
240th 44 40 27%
288th 30 27 17%
336th 24 22 22%
384th 17 15 0%
432th 11 10 0%
482th 11 10 0%

According to this table, as training data decreases, F-score generally de-
creases or stabilizes; this trend coincides with our observation in Section 5.5.
The phenomenon implies that if a user’s software repository has a few resolved840

conflicts (e.g., less than 135), she/he can consider using cross-project predic-
tion as the conflicts in version history seem insufficient to train a good within-
project predictor. Otherwise, if the user’s software repository has sufficient
resolved conflicts (e.g., hundreds or even thousands of conflicts), she/he can
apply RPredictor to do within-project prediction for better accuracy.845

8. Related Work

Our research is related to empirical studies on merge conflicts, awareness-
raising tools, and automated software merge.
8.1. Empirical Studies on Merge Conflicts

Several studies were conducted to characterize the relationship between850

merge conflicts and other aspects of software maintenance [25, 9, 42, 45, 52].
For instance, Estler et al. [25] surveyed 105 student developers, and found that
the lack of awareness (i.e., knowing “who’s changing what”) occurs more fre-
quently than merge conflicts. Leßenich et al. [42] surveyed 41 developers and
identified 7 potential indicators (e.g., number of changed files in both branches)855

27

for merge conflicts. With further investigation of the indicators, the researchers
found that none can predict the conflict frequency. Similarly, Owhadi-Kareshk
et al. defined nine features (e.g., number of added and deleted lines in a branch)
to characterize merging scenarios; they trained a machine-learning model that
predicts conflicts with 57%–68% accuracy [52].860

Similar to these studies, our study also characterizes merge conflicts. How-
ever, it is different in two aspects. First, our study explores how different fea-
tures characterize developers’ strategies of conflict resolution. Second, our study
motivates our research to automatically predict resolution strategies, while ex-
isting studies motivate research to automatically predict conflict occurrence.865

Some other studies characterize the root causes and/or resolutions of textual
conflicts [69, 50, 27, 15, 53]. Specifically, Yuzuki et al. inspected hundreds of
textual conflicts [69]. They observed that conflicting updates caused 44% of
conflicts to the same line of code, and developers resolved 99% of conflicts by
taking either the left- or right- version of code. Brindescu et al. [15] manually870

inspected 606 textual conflicts. They characterized merge conflicts in terms of
the AST diff size, LOC diff size, and the number of authors. They identified
three resolution strategies: SELECT ONE (i.e., keep edits from one branch),
INTERLEAVE (i.e., keep edits from both sides), and ADAPTED (i.e., change
existing edits and/or add new edits). Pan et al. [53] explored the merge conflicts875

in Microsoft Edge; they classified those conflicts based on file types, conflict lo-
cations, conflict sizes, and conflict-resolution patterns. Driven by their empirical
study, the researchers further investigated to use program synthesis for conflict
resolution. The prototype of their resolution tool only tries to concatenate edits
from both branch versions, incapable of suggesting KL or KR resolutions.880

These studies inspired us to define and study candidate features that may
help predict developers’ resolution strategies for conflicts. However, none of
these studies conduct statistical analysis between any recognized features and
developers’ resolutions; our study performed that analysis.

8.2. Awareness-Raising Tools885

Tools [56, 63, 14, 17, 28, 18, 40, 37, 44] were created to monitor and com-
pare programmers’ development activities, in order to improve team activity
awareness. For instance, CASI [63] and Palantír [56] inform a developer of the
artifacts changed by other developers, calculate the severity of those changes,
and visualize the information. Cassandra [37] is a conflict minimization tech-890

nique. It observes the super-sub and caller-callee dependencies between program
entities. By treating those dependencies as constraints on file-editing tasks,
Cassandra identifies tasks that will conflict when performed in parallel. It then
appropriately schedules tasks to recommend conflict-free development paths.
Crystal [17, 18] and WeCode [28] proactively detect collaboration conflicts via895

speculative analysis. They eagerly merge the program changes applied to differ-
ent software branches, even before those changes are all pushed to the master
repository in the distributed version control system (DVCS). They leverage tex-
tual merge, automatic build, and automatic testing in sequence to reveal the
potential conflicts between branches.900

28

The tools mentioned above can proactively detect and report merge conflicts.
However, they do not characterize developers’ resolution preferences, neither do
they automatically recommend any resolution strategy.

8.3. Automated Software Merge
Tools were proposed to detect or resolve merge conflicts [47, 13, 12, 41, 51,905

19, 71, 66, 65, 2, 67, 70, 24]. Mens et al. [47] published a survey on software
merging techniques. FSTMerge [13, 19, 2] parses code for ASTs, and matches
nodes between L and R purely based on the class or method signatures; it then
integrates the edits inside each pair of matched method nodes via textual merge.
IntelliMerge [65] improves FSTMerge’s effectiveness by detecting and resolving910

refactoring-related conflicts. Similar to FSTMerge, JDime [12, 41] also matches
Java methods and classes based on syntax trees. However, JDime merges edits
inside matched methods by matching and manipulating ASTs. AutoMerge [71]
improves over JDime. When branch edits are incompatible with each other,
AutoMerge attempts to resolve conflicts by proposing alternative strategies to915

merge L and R, with each strategy integrating the edits between branches in
distinct ways. SafeMerge [66] checks if a merging scenario introduced new se-
mantics. RPredictor complements all these techniques, as it models and
predicts developers’ resolution preferences.

MergeHelper [51] records the chronological sequence of edit operations made920

by programmers on the Eclipse Java editor. Given two branch versions—L and
R—that conflict with each other, MergeHelper explores the recorded edit se-
quences before both versions, to locate the most recent snapshot that appears
in the evolution history and is consistent with L and R. In other words, Merge-
Helper rolls back edits applied by both branches, until finding an intermediate925

version that occurs just before the first conflict was introduced. It provides
detailed edit information to help developers understand how conflicts got intro-
duced, but does not suggest resolution strategies as RPredictor does.

DeepMerge [24], MergeBERT [67], and GMerge [70] automatically resolve
conflicts using deep-learning methods. However, DeepMerge only focuses on930

conflicts with less than 30 lines [67]; it is not applicable to more complicated
conflicts. Given a textual conflict, both DeepMerge and MergeBERT are de-
signed to integrate partial edits from L and R for resolution, instead of proposing
KL or KR. GMerge does not focus on textual conflicts; instead, it deals with
a different type of merge conflicts where conflicting edits can be co-applied to935

the merged version but trigger semantic errors. RPredictor complements the
learning-based approaches mentioned above. That is, RPredictor can pre-
dict conflicts that get resolved by KL or KR (the majority, according to the
literature), and when Rpredictor predicts ME, it can be complemented with an
alternative method (like DeepMerge or MergeBERT) to automate a resolution940

based on the combination of lines.

29

9. Conclusion

Software merge is complex and time-consuming. People defined the term
“Integration Hell” to refer to the challenges of addressing merge conflicts. Al-
though many tools were proposed to detect and even resolve merge conflicts,945

little tool support is available to automatically resolve conflicts by observing
and mimicking developers’ resolution strategies. Consequently, existing tools
mainly pinpoint issues of merge conflicts, rarely providing solutions to those
issues. In this paper, we conducted the first characterization study to explore
any statistical correlation between 12 features of merge conflicts and developers’950

resolution strategies. Our study shows for the first time that all of the explored
features can help predict developers’ resolution strategies.

Motivated by our study, we also designed and implemented a novel approach—
RPredictor—to predict developers’ resolution strategy, given a merge con-
flict and its related software repository. Our comprehensive evaluation of the955

tool with a large-scale dataset containing 74,861 resolved conflicts showed that
RPredictor effectively predicted resolutions. By training prediction models
with the random forest (RF) algorithm, RPredictor could achieve 63% pre-
cision, 62% recall, 63% F-score, and 82% C-score for within-project prediction;
it also got 46% precision, 47% recall, 46% F-score, and 76% C-score for cross-960

project prediction. Our sensitivity analysis shows that compared with other
machine-learning (ML) algorithms, RF achieved the best results when being
used in RPredictor; RPredictor is sensitive to both the amount and age
of training data; as more training data is provided, RPredictor’s effective-
ness increases or stabilizes. Developers can also customize RPredictorv’s thM965

threshold to more or less often predict M resolutions, making it save less or more
effort.

In the future, we will explore more features and more ML algorithms, to
further improve the representativeness of our characterization study and to
strengthen the capability of RPredictor. For example, we will explore addi-970

tional prediction features related to, e.g., code-change history [58, 59, 57, 61, 62],
testing activity, e.g., [39, 26, 38], decision-making metadata, e.g., [48, 11, 10],
developer expertise, e.g., [60, 20], build failure prediction e.g., [32, 34, 33, 31,
35, 36], security issue prediction e.g., [22, 30] or cross-language issues, e.g., [23].
10. Research Artifact975

We made available the research artifact for our paper [3].

Acknowledgement

We thank all reviewers for their valuable feedback. This work was partially
funded by NSF CCF-1845446, NSF CCF-2046403, Universidad Rey Juan Carlos
under the International Distinguished Researcher award C01INVESDIST, and980

by Saudi Arabian Cultural Mission (SACM). This work also served as foun-
dation for award PID2022-142964OA-I00 by the Spanish Agencia Estatal de
Investigación.

30

References

[1] 2021. git merge - Integrating changes from another branch. https://www.985

git-tower.com/learn/git/commands/git-merge.

[2] 2021. jFSTMerge. https://github.com/guilhermejccavalcanti/
jFSTMerge.

[3] 2022. Research Artifact for Paper: Automatic Prediction of Develop-
ers’ Resolutions for Software Merge Conflicts. https://figshare.com/990

s/3b28e1917a7a05588891.

[4] 2023. aosp-mirror / platform_frameworks_base. https://github.com/
aosp-mirror/platform_frameworks_base.

[5] 2023. CCI-MIT/XCoLab. https://github.com/CCI-MIT/XCoLab.

[6] 2023. jgralab/jgralab. https://github.com/jgralab/jgralab.995

[7] 2023. jhy/jsoup. https://github.com/jhy/jsoup.

[8] 2023. Kruskal-Wallis Test. https://www.statisticssolutions.com/
kruskal-wallis-test/.

[9] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma. 2017.
An Empirical Examination of the Relationship between Code Smells and1000

Merge Conflicts. In 2017 ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (ESEM). 58–67. https:
//doi.org/10.1109/ESEM.2017.12

[10] Khadijah Al Safwan, Mohammed Elarnaoty, and Francisco Servant. 2022.
Developers’ Need for the Rationale of Code Commits: An In-breadth and1005

In-depth Study. Journal of Systems and Software (2022).

[11] Khadijah Al Safwan and Francisco Servant. 2019. Decomposing the Ra-
tionale of Code Commits: The Software Developer’s Perspective. In Joint
Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering.1010

[12] Sven Apel, Olaf Lessenich, and Christian Lengauer. 2012. Structured Merge
with Auto-tuning: Balancing Precision and Performance. In Proceedings
of the 27th IEEE/ACM International Conference on Automated Software
Engineering (Essen, Germany) (ASE 2012). ACM, New York, NY, USA,
120–129. https://doi.org/10.1145/2351676.23516941015

[13] Sven Apel, Jorg Liebig, Benjamin Brandl, Christian Lengauer, and Chris-
tian Kastner. 2011. Semistructured Merge: Rethinking Merge in Revision
Control Systems. In Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering
(Szeged, Hungary) (ESEC/FSE ’11). ACM, New York, NY, USA, 190–200.1020

https://doi.org/10.1145/2025113.2025141

31

https://www.git-tower.com/learn/git/commands/git-merge
https://www.git-tower.com/learn/git/commands/git-merge
https://www.git-tower.com/learn/git/commands/git-merge
https://github.com/guilhermejccavalcanti/jFSTMerge
https://github.com/guilhermejccavalcanti/jFSTMerge
https://figshare.com/s/3b28e1917a7a05588891
https://figshare.com/s/3b28e1917a7a05588891
https://figshare.com/s/3b28e1917a7a05588891
https://github.com/aosp-mirror/platform_frameworks_base
https://github.com/aosp-mirror/platform_frameworks_base
https://github.com/CCI-MIT/XCoLab
https://github.com/jgralab/jgralab
https://github.com/jhy/jsoup
https://www.statisticssolutions.com/kruskal-wallis-test/
https://www.statisticssolutions.com/kruskal-wallis-test/
https://doi.org/10.1109/ESEM.2017.12
https://doi.org/10.1109/ESEM.2017.12
https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/2025113.2025141

[14] Jacob T. Biehl, Mary Czerwinski, Mary Czerwinski, Greg Smith, and
George G. Robertson. 2007. FASTDash: A Visual Dashboard for Fos-
tering Awareness in Software Teams. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (San Jose, Califor-1025

nia, USA) (CHI ’07). ACM, New York, NY, USA, 1313–1322. https:
//doi.org/10.1145/1240624.1240823

[15] Caius Brindescu, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma. 2020.
An empirical investigation into merge conflicts and their effect on software
quality. Empirical Software Engineering 25, 1 (2020), 562–590. https:1030

//doi.org/10.1007/s10664-019-09735-4

[16] Caius Brindescu, Yenifer Ramirez, Anita Sarma, and Carlos Jensen. 2020.
Lifting the Curtain on Merge Conflict Resolution: A Sensemaking Perspec-
tive. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 534–545. https://doi.org/10.1109/ICSME46990.1035

2020.00057

[17] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011.
Proactive Detection of Collaboration Conflicts. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Founda-
tions of Software Engineering (Szeged, Hungary) (ESEC/FSE ’11). ACM,1040

New York, NY, USA, 168–178. https://doi.org/10.1145/2025113.
2025139

[18] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. 2013. Early Detection of
Collaboration Conflicts and Risks. IEEE Transactions on Software Engi-
neering 39, 10 (Oct 2013), 1358–1375. https://doi.org/10.1109/TSE.1045

2013.28

[19] Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. 2017. Evaluat-
ing and Improving Semistructured Merge. Proc. ACM Program. Lang. 1,
OOPSLA, Article 59 (Oct. 2017), 27 pages. https://doi.org/10.1145/
31338831050

[20] Lykes Claytor and Francisco Servant. 2018. Understanding and Leveraging
Developer Inexpertise. In International Conference on Software Engineer-
ing: Companion Proceeedings.

[21] Catarina Costa, José J. C. Figueiredo, Gleiph Ghiotto, and Leonardo
Gresta Paulino Murta. 2014. Characterizing the Problem of Developers’1055

Assignment for Merging Branches. International Journal of Software En-
gineering and Knowledge Engineering 24 (2014), 1489–1508.

[22] James C Davis, Christy A Coghlan, Francisco Servant, and Dongyoon Lee.
2018. The Impact of Regular Expression Denial of Service (ReDoS) in
Practice: an Empirical Study at the Ecosystem Scale. In The ACM Joint1060

European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE).

32

https://doi.org/10.1145/1240624.1240823
https://doi.org/10.1145/1240624.1240823
https://doi.org/10.1007/s10664-019-09735-4
https://doi.org/10.1007/s10664-019-09735-4
https://doi.org/10.1007/s10664-019-09735-4
https://doi.org/10.1109/ICSME46990.2020.00057
https://doi.org/10.1109/ICSME46990.2020.00057
https://doi.org/10.1109/ICSME46990.2020.00057
https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1109/TSE.2013.28
https://doi.org/10.1109/TSE.2013.28
https://doi.org/10.1109/TSE.2013.28
https://doi.org/10.1145/3133883
https://doi.org/10.1145/3133883

[23] James C. Davis, Louis G. Michael IV, Christy A. Coghlan, Francisco Ser-
vant, and Dongyoon Lee. 2019. Why Aren’t Regular Expressions a Lingua
Franca? An Empirical Study on the Re-Use and Portability of Regular Ex-1065

pressions. In Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering.

[24] Elizabeth Dinella, Todd Mytkowicz, Alexey Svyatkovskiy, Christian Bird,
Mayur Naik, and Shuvendu Lahiri. 2023. DeepMerge: Learning to Merge
Programs. IEEE Transactions on Software Engineering 49, 4 (2023), 1599–1070

1614. https://doi.org/10.1109/TSE.2022.3183955

[25] H Christian Estler, Martin Nordio, Carlo A Furia, and Bertrand Meyer.
2014. Awareness and merge conflicts in distributed software development.
In 2014 IEEE 9th International Conference on Global Software Engineering.
IEEE, 26–35.1075

[26] Aakash Gautam, Saket Vishwasrao, and Francisco Servant. 2017. An Em-
pirical Study of Activity, Popularity, Size, Testing, and Stability in Contin-
uous Integration. In International Conference on Mining Software Reposi-
tories.

[27] Gleiph Ghiotto, Leonardo Murta, Márcio Barros, and André van der Hoek.1080

2018. On the Nature of Merge Conflicts: a Study of 2,731 Open Source Java
Projects Hosted by GitHub. IEEE Transactions on Software Engineering
(2018), 1–1. https://doi.org/10.1109/TSE.2018.2871083

[28] M. L. Guimarães and A. R. Silva. 2012. Improving early detection of soft-
ware merge conflicts. In 2012 34th International Conference on Software1085

Engineering (ICSE). 342–352. https://doi.org/10.1109/ICSE.2012.
6227180

[29] David Harris and Sarah Harris. 2007. Digital Design and Computer Archi-
tecture. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[30] Sk Adnan Hassan, Zainab Aamir, Dongyoon Lee, James C. Davis, and1090

Francisco Servant. 2023. Improving Developers’ Understanding of Regex
Denial of Service Tools through Anti-Patterns and Fix Strategies. In 2023
IEEE Symposium on Security and Privacy (SP). 1238–1255. https://
doi.org/10.1109/SP46215.2023.10179442

[31] Xianhao Jin. 2021. Reducing Cost in Continuous Integration with a Collec-1095

tion of Build Selection Approaches. In Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering.

[32] Xianhao Jin and Francisco Servant. 2020. A Cost-efficient Approach to
Building in Continuous Integration. In International Conference on Soft-1100

ware Engineering.

33

https://doi.org/10.1109/TSE.2022.3183955
https://doi.org/10.1109/TSE.2018.2871083
https://doi.org/10.1109/ICSE.2012.6227180
https://doi.org/10.1109/ICSE.2012.6227180
https://doi.org/10.1109/SP46215.2023.10179442
https://doi.org/10.1109/SP46215.2023.10179442

[33] Xianhao Jin and Francisco Servant. 2021. CIBench: A Dataset and Collec-
tion of Techniques for Build and Test Selection and Prioritization in Con-
tinuous Integration. In International Conference on Software Engineering:
Companion Proceedings.1105

[34] Xianhao Jin and Francisco Servant. 2021. What Helped, and What Did
Not? An Evaluation of the Strategies to Improve Continuous Integration.
In International Conference on Software Engineering.

[35] Xianhao Jin and Francisco Servant. 2022. Which Builds are Really Safe to
Skip? Maximizing Failure Observation for Build Selection in Continuous1110

Integration. Journal of Systems and Software (2022).

[36] Xianhao Jin and Francisco Servant. 2023. HybridCISave: A Combined
Build and Test Selection Approach in Continuous Integration. ACM Trans-
actions on Software Engineering and Methodology 32, 4, Article 93 (may
2023), 39 pages. https://doi.org/10.1145/35760381115

[37] B. K. Kasi and A. Sarma. 2013. Cassandra: Proactive conflict minimization
through optimized task scheduling. In 2013 35th International Conference
on Software Engineering (ICSE). 732–741. https://doi.org/10.1109/
ICSE.2013.6606619

[38] Ayaan M Kazerouni, James C Davis, Arinjoy Basak, Clifford A Shaffer,1120

Francisco Servant, and Stephen H Edwards. 2021. Fast and Accurate In-
cremental Feedback for Students’ Software Tests using Selective Mutation
Analysis. Journal of Systems and Software (2021).

[39] Ayaan M. Kazerouni, Clifford A. Shaffer, Stephen H. Edwards, and Fran-
cisco Servant. 2019. Assessing Incremental Testing Practices and Their1125

Impact on Project Outcomes.

[40] Michele Lanza, Marco D’Ambros, Alberto Bacchelli, Lile Hattori, and
Francesco Rigotti. 2013. Manhattan: Supporting real-time visual team ac-
tivity awareness. In 2013 21st International Conference on Program Com-
prehension (ICPC). IEEE, 207–210.1130

[41] Olaf Leßenich, Sven Apel, and Christian Lengauer. 2015. Balancing Preci-
sion and Performance in Structured Merge. Automated Software Engg. 22, 3
(Sept. 2015), 367–397. https://doi.org/10.1007/s10515-014-0151-5

[42] Olaf Leßenich, Janet Siegmund, Sven Apel, Christian Kästner, and Claus
Hunsen. 2018. Indicators for merge conflicts in the wild: survey and em-1135

pirical study. Automated Software Engineering 25, 2 (2018), 279–313.

[43] Thomas W. MacFarland and Jan M. Yates. 2016. Kruskal–Wallis H-
Test for Oneway Analysis of Variance (ANOVA) by Ranks. Springer
International Publishing, Cham, 177–211. https://doi.org/10.1007/
978-3-319-30634-6_61140

34

https://doi.org/10.1145/3576038
https://doi.org/10.1109/ICSE.2013.6606619
https://doi.org/10.1109/ICSE.2013.6606619
https://doi.org/10.1007/s10515-014-0151-5
https://doi.org/10.1007/978-3-319-30634-6_6
https://doi.org/10.1007/978-3-319-30634-6_6

[44] Chandra Maddila, Nachiappan Nagappan, Christian Bird, Georgios
Gousios, and Arie van Deursen. 2021. ConE: A Concurrent Edit De-
tection Tool for Large Scale Software Development. arXiv preprint
arXiv:2101.06542 (2021).

[45] M. Mahmoudi, S. Nadi, and N. Tsantalis. 2019. Are Refactorings to1145

Blame? An Empirical Study of Refactorings in Merge Conflicts. In 2019
IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 151–162. https://doi.org/10.1109/SANER.
2019.8668012

[46] J.H. McDonald. 2014. Handbook of Biological Statistics (3rd ed.). Sparky1150

House Publishing, Baltimore, Maryland, 157–164.

[47] T. Mens. 2002. A state-of-the-art survey on software merging. IEEE
Transactions on Software Engineering 28, 5 (2002), 449–462. https:
//doi.org/10.1109/TSE.2002.1000449

[48] Louis G. Michael, James Donohue, James C. Davis, Dongyoon Lee, and1155

Francisco Servant. 2019. Regexes are Hard: Decision-Making, Difficulties,
and Risks in Programming Regular Expressions. In International Confer-
ence on Automated Software Engineering.

[49] Nicholas Nelson, Caius Brindescu, Shane McKee, Anita Sarma, and Danny
Dig. 2019. The life-cycle of merge conflicts: processes, barriers, and strate-1160

gies. Empirical Software Engineering (02 2019). https://doi.org/10.
1007/s10664-018-9674-x

[50] Hoai Le Nguyen and Claudia-Lavinia Ignat. 2018. An Analysis of Merge
Conflicts and Resolutions in Git-Based Open Source Projects. Com-
puter Supported Cooperative Work (CSCW) 27, 3 (01 Dec 2018), 741–765.1165

https://doi.org/10.1007/s10606-018-9323-3

[51] Yuichi Nishimura and Katsuhisa Maruyama. 2016. Supporting Merge
Conflict Resolution by Using Fine-Grained Code Change History. 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER) 1 (2016), 661–664.1170

[52] Moein Owhadi-Kareshk, Sarah Nadi, and Julia Rubin. 2019. Predicting
Merge Conflicts in Collaborative Software Development. https://arxiv.
org/pdf/1907.06274.pdf.

[53] Rangeet Pan, Vu Le, Nachiappan Nagappan, Sumit Gulwani, Shuvendu
Lahiri, and Mike Kaufman. 2021. Can Program Synthesis Be Used to1175

Learn Merge Conflict Resolutions? An Empirical Analysis. In Proceedings
of the 43rd International Conference on Software Engineering (Madrid,
Spain) (ICSE ’21). IEEE Press, 785–796. https://doi.org/10.1109/
ICSE43902.2021.00077

35

https://doi.org/10.1109/SANER.2019.8668012
https://doi.org/10.1109/SANER.2019.8668012
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1007/s10664-018-9674-x
https://doi.org/10.1007/s10664-018-9674-x
https://doi.org/10.1007/s10606-018-9323-3
https://arxiv.org/pdf/1907.06274.pdf
https://arxiv.org/pdf/1907.06274.pdf
https://doi.org/10.1109/ICSE43902.2021.00077
https://doi.org/10.1109/ICSE43902.2021.00077

[54] Karl Pearson. 1900. X. On the criterion that a given system of deviations1180

from the probable in the case of a correlated system of variables is such
that it can be reasonably supposed to have arisen from random sampling.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science 50, 302 (July 1900), 157–175. https://doi.org/10.1080/
147864400094638971185

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A.
Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research 12 (2011), 2825–2830.1190

[56] Anita Sarma, David F Redmiles, and Andre Van Der Hoek. 2011. Palantir:
Early detection of development conflicts arising from parallel code changes.
IEEE Transactions on Software Engineering 38, 4 (2011), 889–908.

[57] Francisco Servant. 2013. Supporting Bug Investigation using History Anal-
ysis. In International Conference on Automated Software Engineering.1195

[58] Francisco Servant and James A Jones. 2011. History Slicing. In Interna-
tional Conference on Automated Software Engineering. IEEE.

[59] Francisco Servant and James A Jones. 2012. History Slicing: Assisting
Code-evolution Tasks. In International Symposium on the Foundations of
Software Engineering.1200

[60] Francisco Servant and James A Jones. 2012. WhoseFault: Automatic
Developer-to-Fault Assignment through Fault Localization. In Interna-
tional Conference on Software Engineering.

[61] Francisco Servant and James A Jones. 2013. Chronos: Visualizing Slices of
Source-code History. In Working Conference on Software Visualization.1205

[62] Francisco Servant and James A Jones. 2017. Fuzzy Fine-grained Code-
history Analysis. In International Conference on Software Engineering.

[63] Francisco Servant, James A Jones, and André Van Der Hoek. 2010. CASI:
preventing indirect conflicts through a live visualization. In Proceedings of
the 2010 ICSE Workshop on Cooperative and Human Aspects of Software1210

Engineering. 39–46.

[64] Bowen Shen, Muhammad Ali Gulzar, Fei He, and Na Meng. 2022. A
Characterization Study of Merge Conflicts in Java Projects. ACM Trans.
Softw. Eng. Methodol. (jun 2022). https://doi.org/10.1145/3546944
Just Accepted.1215

[65] Bo Shen, Wei Zhang, Haiyan Zhao, Guangtai Liang, Zhi Jin, and Qianxiang
Wang. 2019. IntelliMerge: A Refactoring-Aware Software Merging Tech-
nique. Proc. ACM Program. Lang. 3, OOPSLA, Article 170 (Oct. 2019),
28 pages. https://doi.org/10.1145/3360596

36

https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1145/3546944
https://doi.org/10.1145/3360596

[66] Marcelo Sousa, Isil Dillig, and Shuvendu Lahiri. 2018. Veri-1220

fied Three-Way Program Merge. In Object-Oriented Programming,
Systems, Languages & Applications Conference (OOPSLA 2018).
ACM. https://www.microsoft.com/en-us/research/publication/
verified-three-way-program-merge/

[67] Alexey Svyatkovskiy, Sarah Fakhoury, Negar Ghorbani, Todd Mytkow-1225

icz, Elizabeth Dinella, Christian Bird, Jinu Jang, Neel Sundaresan, and
Shuvendu K. Lahiri. 2022. Program Merge Conflict Resolution via Neu-
ral Transformers. In Proceedings of the 30th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association1230

for Computing Machinery, New York, NY, USA, 822–833. https:
//doi.org/10.1145/3540250.3549163

[68] Gustavo Vale, Claus Hunsen, Eduardo Figueiredo, and Sven Apel. 2021.
Challenges of Resolving Merge Conflicts: A Mining and Survey Study.
IEEE Transactions on Software Engineering (2021), 1–1. https://doi.1235

org/10.1109/TSE.2021.3130098

[69] R. Yuzuki, H. Hata, and K. Matsumoto. 2015. How we resolve conflict:
an empirical study of method-level conflict resolution. In 2015 IEEE 1st
International Workshop on Software Analytics (SWAN). 21–24. https:
//doi.org/10.1109/SWAN.2015.70704841240

[70] Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shu-
vendu K. Lahiri. 2022. Using Pre-Trained Language Models to Resolve
Textual and Semantic Merge Conflicts (Experience Paper). In Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis (Virtual, South Korea) (ISSTA 2022). Association for Com-1245

puting Machinery, New York, NY, USA, 77–88. https://doi.org/10.
1145/3533767.3534396

[71] Fengmin Zhu and Fei He. 2018. Conflict Resolution for Structured Merge
via Version Space Algebra. Proc. ACM Program. Lang. 2, OOPSLA, Article
166 (Oct. 2018), 25 pages. https://doi.org/10.1145/32765361250

37

https://www.microsoft.com/en-us/research/publication/verified-three-way-program-merge/
https://www.microsoft.com/en-us/research/publication/verified-three-way-program-merge/
https://doi.org/10.1145/3540250.3549163
https://doi.org/10.1145/3540250.3549163
https://doi.org/10.1109/TSE.2021.3130098
https://doi.org/10.1109/TSE.2021.3130098
https://doi.org/10.1109/TSE.2021.3130098
https://doi.org/10.1109/SWAN.2015.7070484
https://doi.org/10.1109/SWAN.2015.7070484
https://doi.org/10.1145/3533767.3534396
https://doi.org/10.1145/3533767.3534396
https://doi.org/10.1145/3276536

	Introduction
	Background
	Motivation
	Our Research

	Dataset Construction
	Our Characterization Study
	Statistical Analysis via H Test
	Statistical Analysis via Chi-Square Test

	Approach
	Evaluation
	Evaluation Metrics
	RQ1: Effectiveness of Within-Project Prediction
	Baseline
	Comparison with Baseline

	RQ2: Effectiveness of Cross-Project Prediction
	Baseline
	Comparison with Baseline
	Comparison between Cross-Project and Within-Project Prediction

	RQ3: Prediction Effectiveness on Unbalanced Data
	Effectiveness of Within-Project Prediction on Unbalanced Data
	Effectiveness of Cross-Project Prediction on Unbalanced Data

	RQ4: Sensitivity to The Amount of Training Data
	RQ5: Sensitivity to The Age of Training Data
	RQ6: Sensitivity to The Adopted Machine-Learning Algorithm
	RQ7: Sensitivity to Threshold Setting
	A Threshold-Based Variant Approach: RPredictorv
	Experiment with RPredictorv

	Threats to Validity
	Discussion
	The Benefit of RPredictor's Recommendations for Developers
	The Impact of Mispredictions and Developers' Trust in Automated Recommendations
	Applicability of RPredictor on Less-Balanced Projects
	What If A Project Has Little Training Data Available?

	Related Work
	Empirical Studies on Merge Conflicts
	Awareness-Raising Tools
	Automated Software Merge

	Conclusion
	Research Artifact

