
Supporting Bug Investigation using History Analysis
Francisco Servant

University of California, Irvine, U.S.A.
fservant@uci.edu

Abstract—In my research, I propose an automated technique to
support bug investigation by using a novel analysis of the history
of the source code. During the bug-fixing process, developers
spend a high amount of manual effort investigating the bug in
order to answer a series of questions about it. My research will
support developers in answering the following questions about a
bug: Who is the most suitable developer to fix the bug?, Where is
the bug located?, When was the bug inserted? and Why was the
bug inserted?

I. PROPOSED RESEARCH

All software projects are affected by software bugs. New
bugs in software are found and reported every day. As an
example, the Eclipse open-source project can receive an av-
erage of 29 new bug reports per day [2]. Fixing bugs is a
highly expensive process in terms of developer effort. Bug-
fixing is the most important task of software maintenance,
which previous studies have shown to take more than 90% of
the development effort [6]. Also, an important part of the effort
that developers spend in fixing bugs involves their investigation
to answer multiple questions about them.

The goal of my research is to provide automated support for
bug investigation in the process of answering: Who is the most
suitable developer to fix the bug?, Where is the bug located?,
When was the bug inserted? and Why was the bug inserted? In
order to provide automated support for bug investigation, I will
propose a novel analysis for the history of source code. Since
the code involved in a bug may be composed of contiguous
or disparate lines of code from one or multiple methods and
files, I will propose a history-analysis technique that operates
at the granularity of a line of code.

Current revision-control systems allow users to process code
history at the granularity of files (e.g. Subversion, Git). Some
researchers proposed techniques to obtain code history at the
granularity of methods, e.g. [10]. Other researchers proposed
techniques to track the history of single lines of code, but
they still require this history to be queried for whole source
code files [23]. I will propose a novel technique to obtain the
minimum complete history of any set of lines of code.

By using this novel history analysis, my research will
process in different ways the history of the lines of code
involved in a bug to provide automated support for answering
the previously mentioned questions for bug investigation.

II. MOTIVATION AND RELATED WORK

My research proposes to provide developers with automated
support to answer four questions in their investigation of bugs:

Who is the most suitable developer to fix the bug? With
high numbers of new bugs being found every day and large
numbers of developers working in the same software project,
development teams need to dedicate a non-trivial amount of
time to decide who is the most suitable person to fix each one
of them. Currently, development teams perform the developer-
to-bug assignment by manually analyzing very limited infor-
mation, such as: the contents of the bug description in the
bug report, the error message provided by the bug, and their
experiential knowledge about the expertise of each developer.

The problem of finding the most suitable developer to fix
a bug has been mainly approached in three different ways.
First, some authors use a machine-learning classifier to predict
which developer should fix a bug according to its natural-text
description inside the bug report, e.g. [3]. Anvik et al. [3]
evaluated the performance of six machine-learning classifiers
— Naive Bayes, Support Vector Machines, C4.5, Expectation
Maximization, Conjuctive Rules, and Nearest Neighbor. Sec-
ond, other authors build expertise profiles by extracting terms
for the bug description, e.g. [21]. Shokripour et al. [21] build
expertise profiles from bug descriptions, commit messages,
and comments in the source code. Third, other authors build
expertise profiles by extracting topics from the source code
that each developer modified, e.g. [15].

However, all these approaches require a natural-text descrip-
tion of the bug, and therefore cannot be applied in situations
where the only representation of the bug available is a failing
execution or test case. My proposed research will be applicable
as soon as the bug can be reproduced by a failing execution.

Where is the bug located? Once the bug has been assigned
to a developer, she needs to debug the code in order to fix it.
Debugging is one of the most time-consuming tasks within the
efforts of reducing the number of bugs in software [4]. Within
the debugging process, locating the errors in the source code
was found to be the most difficult task [22].

Multiple techniques have been proposed by researchers to
localize the area of the source code that is correlated with a
bug, e.g. [11], [14]. For example, Jones et al. [11] analyze
the correlation between executed lines of code and failing test
cases. Each line of code is more correlated with the bug if it
is executed by more failing test cases and it is less correlated
with the bug if it is executed by more passing test cases.

The fault-localization techniques proposed to-date are de-
signed specifically to provide an indication of where in the
source code the bug is located. My proposed research will use
fault-localization techniques to identify the lines of code that

© © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. The definitive Version of Record was published as: F. Servant, "Supporting bug
investigation using history analysis," 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE), Silicon Valley, CA,
USA, 2013, pp. 754-757, DOI: https://doi.org/10.1109/ASE.2013.6693150

are involved in a bug, but it will also adapt them to combine
their results with my new code-history analysis.

When and why was the bug inserted? After the bug has been
located within the source code, developers need to make an
effort to understand it. Von Mayrhauser and Vans [24] found
that good program understanding was of central importance in
the debugging task. Additionally, Gilmore [7] found that the
success of a debugging session was more attributed to better
comprehension than to better debugging skills. However, Ko et
al. [12] found that one of the most time consuming questions
to answer about the source code was why code had been
implemented in a certain way. Also, LaToza and Myers [13]
found that among the hard-to-answer questions about source
code were questions about when was some code changed.

Some authors have proposed techniques to visualize the
evolution of source code in order to provide insights about
when and why code was implemented in a certain manner.
Some visualizations show the evolution of the source code
at a granularity of source code files, e.g. [8], [25]. Other
visualizations show more details, such as the evolution of
methods, e.g. [9], [10]. And other techniques use a granularity
of the line of code to visualize the evolution of code, e.g. [23].

However, neither of these visualizations allow the explo-
ration of the history of an arbitrary set of lines of code,
such as the lines of code that are involved in a bug. Even
the techniques that allow a line-of-code granularity require
the visualization of the history of whole files. My proposed
research will provide the first technique that allows to obtain
the minimum complete history of a set of lines of code.

III. WORK TO DATE

I have already performed some work to provide automated
support for bug investigation. First, I designed a technique
to perform fine-grained analysis of source-code history. Then,
I started exploring how fine-grained history analysis and its
combination with program analysis can support developers in
answering the proposed questions for bug investigation.

Novel History Analysis. In order to allow an analysis of
source-code history at the fine-grained level of lines of code,
I presented History Slicing [16]. History Slicing is the first
technique that allows to obtain the minimum complete history
of a set of lines of code. History Slicing automatically tracks
the whole history of each line of code in a revision-control
system by building a History Graph. A History Graph is a
bi-partite graph, which is built by mapping the corresponding
lines of code of the program between consecutive revisions.
History Slicing uses the traversal of the History Graph to allow
an efficient analysis of the history of any set of lines of code
by obtaining History Slices. The History Slice for a set of
lines of code of interest (i.e., slicing criterion) contains all
their corresponding lines of code in all past revisions of the
software project in which they were modified.

History slicing addresses the limitations of traditional
revision-control systems by providing the ability to (1) query

source-code history at the line level, for any arbitrary set of
lines, across any set of files, and (2) obtain the minimum
complete evolution of those lines, along with their tracing
among revisions. In the same way that program slicing selects
the relevant areas of the code in the dimension of the program,
history slicing selects both the relevant revisions of the code
in the dimension of history and the appropriate lines of code
in each of those revisions in the dimension of the program.

In my experiments, History Slicing showed drastic improve-
ments over conventional revision-control systems. History
Slicing reduced the amount of information that needed to be
processed in order to obtain the history of a set of lines of
code by up to three orders of magnitude.

Who is the most suitable developer to fix the bug? In order to
provide an automated technique to identify the most suitable
developer to fix a bug, I proposed WhoseFault [18]. Whose-
Fault was the first developer-to-bug assignment technique to
not require a description of the bug written in natural language.

WhoseFault first uses a statistical coverage-based fault-
localization technique to identify the lines of code that are
correlated with the bug and to provide a score of correlation
for each one of them. Then, WhoseFault obtains the History
Slice for each line of code involved in the bug, which includes,
for each change, its type, its time, and who made it. In its
final step, WhoseFault uses an expertise-finding analysis that
processes the whole history of every line of code that was
correlated with the bug. Through the expertise-finding step,
every developer that ever modified any one of such lines of
code receives an expertise score that depends, for each line of
code, on: (1) its score of correlation with the bug, (2) the
number of changes made to it by each developer, and (3)
the recency of such changes. After the expertise-finding step,
WhoseFault returns a ranked list of developers in terms of how
much expertise they have over the faulty lines of code.

My experiments showed that WhoseFault chooses the cor-
rect developer in the first ranked position for 35% of the
bugs studied, for 50% when considering the top two posi-
tions, and for 81% when considering the top three positions.
I also compared WhoseFault against an existing expertise-
assessment technique and found that WhoseFault provided
greater accuracy, by up to 37%.

Where is the bug located? My research uses fault-localization
techniques to identify the areas of the code that are correlated
with the bug. I have performed experiments to understand
how the use of a simple fault-localization technique compares
to the use of a statistical coverage-based fault-localization
technique within WhoseFault’s algorithm to find the most
suitable developer to fix a bug. I observed no change in
WhoseFault’s accuracy when using a simple technique that
assigns the same score of correlation with the bug to all the
lines of code that were executed by a failing execution. Since
WhoseFault performs a fault-localization step as part of its
approach, it is the first developer-to-bug assignment technique
to provide a recommendation of the location of the bug as
well as the most suitable developers to fix it.

When was the bug inserted? As a first step for supporting the
identification of the moment when a bug was inserted, I have
studied the utility of History Slicing in helping developers to
find the origin of a code snippet. I performed such study as part
of a set of experiments to assess the utility of History Slicing in
supporting developers for answering multiple questions about
the history of source code [17]. I studied developers using
conventional revision control techniques and developers using
an automated implementation of History Slicing to perform
software maintenance tasks that involved understanding the
history of source code. Developers using History Slicing: (1)
correctly performed the tasks in more than double the cases,
and (2) used almost half the time to complete the tasks.

Why was the bug inserted? My approach to supporting
developers in finding out the reason why a bug was inserted
uses a software visualization. I have developed a visualization
for source-code history to support developers in understanding
the rationale behind a set of lines of code. Such visualization
is implemented in a tool called CHRONOS [19]. CHRONOS is
a plug-in for Eclipse that displays the History Slice for any
set of lines of code. For every change to a set of lines of code,
CHRONOS shows the actual contents of that change and the
commit message for it.

IV. FUTURE WORK

In the future, I plan to extend my research in bug analysis
for all of the four proposed questions for bug investigation.

Who is the most suitable developer to fix the bug? In my
WhoseFault [18] project, I showed that the combination of
program analysis and History Slicing was highly successful at
identifying the most suitable developer to fix a bug. Next,
I intend to extend WhoseFault by improving its expertise-
finding algorithm, by comparing it with other state-of-the-
art developer-to-bug assignment techniques, and by creating
a visualization to provide a better understanding of why each
developer was recommended.

WhoseFault’s expertise-finding algorithm may be improved
by modifying each of its components. I intend to improve
WhoseFault’s expertise-finding algorithm by experimenting
with multiple fault-localization techniques, different line-
mapping techniques for building the History Graph, and
variations of WhoseFault’s expertise formula. For example,
the results provided by WhoseFault may improve by using
the more recent Ochiai [1] fault-localization technique instead
of Tarantula [11], or by penalizing the age of code changes
in an exponential manner instead of linearly. Additionally,
WhoseFault may also achieve an acceptable effectiveness by
reducing its requirements. I plan to experiment with decreasing
amounts of test suite execution and history analysis to study
how much we can reduce the complexity of WhoseFault’s
algorithm without impacting its effectiveness.

Once I have found an optimal configuration for Whose-
Fault’s algorithm, I also plan to compare its effectiveness with
other state-of-the-art developer-to-bug assignment techniques.
Other authors have proposed techniques to recommend the

most suited developers to fix a bug, given its description in a
bug report, e.g. [3], [5], [15]. By comparing the performance of
WhoseFault and these techniques in terms of both effectiveness
and efficiency, I plan to find out the trade-offs of their use
when both a failing execution and a bug report are available.

Finally, I also plan to create a visualization to provide
more detailed information about why each developer was
recommended for a bug. Currently, WhoseFault returns its
developer recommendation for a bug in the form of a ranked
list of developers. However, it does not provide much infor-
mation about why each developer is recommended on each
rank. By visualizing more detailed information about the
recommendation, such as what areas of the code influenced
the expertise of each developer or how recent their expertise
with such areas of the code is, I plan to provide developer
teams with a better understanding of the expertise that each
developer provides for a bug.

Where is the bug located? As I mentioned in Section III,
my research builds on top of fault-localization techniques.
Therefore, I plan to study how different approaches to fault-
localization adapt to answering the questions of Who is the
most suitable developer to fix a bug?, and When and why was
a bug inserted? I explain how I intend to perform such study
in the sections corresponding to each one of these questions.

When was the bug inserted? Another next step for my
research is to study how the combination of program and
history analysis can help to identify when a bug was inserted.
In previous research [17], I showed that history slices were
highly successful at helping developers to find the origin of a
code snippet. However, identifying when a bug was inserted
presents a new challenge, since the area of the code that
contains the bug is not normally well defined.

I plan to explore how different fault-localization techniques
can be combined with History Slicing to support the task
of finding the point in time at which a bug was inserted.
I expect that showing developers the history slice for every
line of code that is correlated with the bug will result in too
much information for them to process. One possible alternative
would be to show developers the history slice only for the lines
of code that have the highest correlation with the bug. An
additional product of this study might be a heuristic to fully
automate the process of answering when a bug was inserted.

Why was the bug inserted? I also plan to study how my
approach can support the process of understanding why a bug
was inserted. I intend to perform this experiment in two parts.
In the first part, I will study how effectively the visualization
of history slices can support developers in understanding the
rationale behind a code snippet that contains a bug. In this
study, I intend to observe how effectively this approach can
represent why the bug was inserted when the developer has
perfect knowledge of the location of the bug. In the second
part, I will study fault-localization techniques to learn how
they can be combined with history slicing to support the
process of answering why the bug was inserted when the
location of the bug is unknown.

Improvements to the Visualization of History Slices. Finally,
I plan to make general improvements to the visualization of
History Slices. In past work [17], I presented a visualization
for History Slices that allows infinite panning and zooming
of a canvas that contains the snapshots of code within a
history slice, with some of its meta-data. I plan to improve this
visualization by making it more interactive. I believe that this
visualization would help developers in their bug investigation
if they could hide or show portions of a history slice at will.
Another possible feature would be to provide the ability to
select what meta-data will be shown, as well as to allow the
display of additional meta-data, such as the set of files —
or snapshots within them — that were committed together
with a snapshot that belongs to the history slice. Finally, I
also think that developers would benefit from the ability to
interactively re-define the lines of code of interest for which
to visualize their history slice. I will study the need for these
improvements by comparing how efficiently developers can
perform bug investigations when using the new visualization
and when using the old visualization.

V. PUBLICATIONS

I am currently the first author of a workshop paper [20], a
short paper [16], two full conference papers [17], [18], and a
tool demo paper [19].

VI. CONTRIBUTIONS

When my dissertation work is finished, it will provide
multiple contributions. First, it will provide a fine-grained
approach to analyze the history of source code, enabling the
analysis of the history of any set of lines of code, contiguous
or fragmented, from any number of files. This code-history
analysis would be the first technique that allows to obtain the
minimum complete history of a set of lines of code. Second,
it will provide a visualization of the history of a set of lines
of code that enables an efficient inspection of it by humans.
Third, it will provide the first automated technique to rec-
ommend the most suitable developers to fix a bug without the
need of a natural-language description of the bug. Additionally,
this would be the first technique to provide a recommendation
of where the bug is located as well as the recommendation of
developers to fix it. Fourth, it will provide a comparative study
of the accuracy of many different developer-to-bug assignment
techniques. Fifth, it will provide a visualization that describes
why each developer is recommended for fixing a bug. Sixth, it
will provide a technique to support developers in finding out
when a bug was inserted. Seventh, it will provide a technique
to support developers in finding out why a bug was inserted.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under award CCF-1116943.

REFERENCES

[1] R. Abreu, P. Zoeteweij, and A. van Gemund. On the Accuracy of
Spectrum-based Fault Localization. In Testing: Academic and Industrial
Conference Practice and Research Techniques, pages 89 –98, 2007.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug?
In International Conference on Software Engineering, pages 361–370,
2006.

[3] J. Anvik and G. C. Murphy. Reducing the Effort of Bug Report Triage:
Recommenders for Development-Oriented Decisions. ACM Transactions
on Software Engineering and Methodology, 20(3):10:1—10:35, 2011.

[4] T. Ball and S. G. Eick. Software visualization in the large. Computer,
29(4):33–43, 1996.

[5] D. Cubranic. Automatic Bug Triage using Text Categorization. In
International Conference on Software Engineering & Knowledge En-
gineering, pages 92–97, 2004.

[6] L. Erlikh. Leveraging Legacy System Dollars for E-Business. IT
professional, 2(3):17–23, 2000.

[7] D. J. Gilmore. Models of Debugging. Acta Psychologica, 78(1):151–
172, 1991.

[8] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse. How Developers Drive
Software Evolution. In Workshop on Principles of Software Evolution,
2005.

[9] L. Hattori, M. Lungu, and M. Lanza. Replaying past changes in multi-
developer projects. In Joint ERCIM Workshop on Software Evolution
(EVOL) and International Workshop on Principles of Software Evolution
(IWPSE), pages 13–22, 2010.

[10] R. Holmes and A. Begel. Deep Intellisense: a Tool for Rehydrating
Evaporated Information. In International Working Conference on Mining
Software Repositories, pages 23–26, 2008.

[11] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of Test
Information to Assist Fault Localization. In International Conference
on Software Engineering, pages 467–477, 2002.

[12] A. J. Ko, R. DeLine, and G. Venolia. Information Needs in Collocated
Software Development Teams. In International Conference on Software
Engineering, pages 344–353, 2007.

[13] T. D. LaToza and B. A. Myers. Hard-to-Answer Questions about Code.
In Evaluation and Usability of Programming Languages and Tools,
pages 8:1–8:6, 2010.

[14] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
Statistical Bug Isolation. In Programming Language Design and
Implementation, PLDI ’05, pages 15–26.

[15] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning Bug Reports using a
Vocabulary-Based Expertise Model of Developers. Mining of Software
Repositories, 2009.

[16] F. Servant and J. A. Jones. History Slicing. In International Conference
on Automated Software Engineering, pages 452–455, 2011.

[17] F. Servant and J. A. Jones. History Slicing : Assisting Code-Evolution
Tasks. In Foundations of Software Engineering, pages 43:1–43:11, 2012.

[18] F. Servant and J. A. Jones. WhoseFault: Automatic Developer-to-Fault
Assignment through Fault Localization. In International Conference on
Software Engineering, 2012.

[19] F. Servant and J. A. Jones. Chronos: Visualizing Slices of Source-Code
History. In IEEE Working Conference on Software Visualization, 2013.

[20] F. Servant, J. A. Jones, and A. Van Der Hoek. CASI: Preventing Indirect
Conflicts through a Live Visualization. In Workshop on Cooperative and
Human Aspects of Software Engineering, pages 39–46, 2010.

[21] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani. Why so
Complicated? Simple Term Filtering and Weighting for Location-based
Bug Report Assignment Recommendation. In Mining of Software
Repositories, pages 2–11, 2013.

[22] I. Vessey. Expertise in Debugging Computer Programs: A Process
Analysis. International Journal of Man-Machine Studies, 23(5):459–
494, 1985.

[23] L. Voinea, A. Telea, and J. J. van Wijk. Cvsscan: Visualization of code
evolution. In ACM Symposium on Software visualization, pages 47–56,
2005.

[24] A. von Mayrhauser and A. M. Vans. Program Understanding Behavior
during Debugging of Large Scale Software. In Workshop on Empirical
Studies of Programmers, pages 157–179, 1997.

[25] R. Wettel and M. Lanza. Visualizing software systems as cities. In
International Workshop on Visualizing Software for Understanding and
Analysis, pages 92–99, 2007.

	Proposed Research
	Motivation and Related Work
	Work to Date
	Future Work
	Publications
	Contributions
	References

