
WHOSEFAULT: Automatic Developer-to-Fault Assignment through Fault
Localization

Francisco Servant
Department of Informatics

University of California, Irvine
Irvine, CA, U.S.A.

fservant@ics.uci.edu

James A. Jones
Department of Informatics

University of California, Irvine
Irvine, CA, U.S.A.

jajones@ics.uci.edu

Abstract—This paper describes a new technique, which
automatically selects the most appropriate developers for fixing
the fault represented by a failing test case, and provides a
diagnosis of where to look for the fault. This technique works
by incorporating three key components: (1) fault localization
to inform locations whose execution correlate with failure, (2)
history mining to inform which developers edited each line of
code and when, and (3) expertise assignment to map locations
to developers. To our knowledge, the technique is the first to
assign developers to execution failures, without the need for
textual bug reports. We implement this technique in our tool,
WHOSEFAULT, and describe an experiment where we utilize
a large, open-source project to determine the frequency in
which our tool suggests an assignment to the actual developer
who fixed the fault. Our results show that 81% of the time,
WHOSEFAULT produced the same developer that actually fixed
the fault within the top three suggestions. We also show that
our technique improved by a difference between 4% and 40%
the results of a baseline technique. Finally, we explore the
influence of each of the three components of our technique
over its results, and compare our expertise algorithm against
an existing expertise assessment technique and find that our
algorithm provides greater accuracy, by up to 37%.

Keywords-developer assignment; fault localization; mining
software repositories; expertise assignment

I. INTRODUCTION

Today, when a test suite is run and failures are found, a
project manager (or someone equally familiar with the soft-
ware) attempts to examine the symptoms of the failures and
assign them to developers to find and fix the faults causing
them. Each developer assignment is made utilizing (1) the
symptoms of failure, (2) mental inference by the assigner of
which functionality was likely to have been the root cause of
that symptom, and (3) an experiential knowledge of which
developers are responsible for which features. Similarly, in
the process of bug-triage, faults are represented by bug
reports in a bug-tracking system. In this domain, we can
also see evidence of the abundance of errors in the manual
assignment of developers to faults. Often a bug report is
assigned, and then re-assigned, sometimes repeatedly, until
it finds the proper developer that has the necessary expertise
to understand, find, and fix the problem [15], [16].

We present in this paper a technique that automatically
chooses the developers to fix failures, represented by erro-
neous executions. Utilizing such a technique, we anticipate a
better assignment, sooner, thus saving the project manager’s
time in the assignment. We also anticipate reducing the
amount of reassignments necessary, saving developer time.

Some existing techniques for developer assignment fo-
cus on finding the right developer for resolving a bug
report (e.g., [3], [16], [32]). However, Bettenburg et al. [6]
performed a study of 466 developers and found that bug
reports are often incomplete and poorly written. Although in
many cases, bug reports are adequate sources for performing
developer assignments, additional techniques are warranted
when they do not exist or are inadequate. Moreover, even
if bug reports exist for a fault, the mapping from existing
failures to bug reports may not have been identified.

Irrespective of the absence or presence of quality bug
reports, testing failures or erroneous executions often pro-
vide the first evidence of program faults that need to
be fixed. Testing failures can exist for extended intervals,
spanning many revisions of the program, and may or may
not have a related bug report. Such failures can and are often
directly assigned to developers for them to fix. However,
simple solutions such as assigning the failure-fixing tasks to
developers who most recently committed changes are often
not appropriate. As evidence, researchers have developed
techniques which apply complex algorithms to finding the
right developer for answering questions about source code
artifacts (e.g., [13], [18], [27]).

In this paper, we present WHOSEFAULT, a technique
which automatically chooses expert developers to fix the
fault represented by a failing test case, and provides them
with a diagnosis of the location of the fault causing the
failure. Such a technique provides a series of improvements
over existing techniques that assign developers to bug reports
or source code artifacts: (1) In the event of a test-case failure,
the test case can be directly assigned to the expert developer,
without the need to write a detailed and unambiguous bug
report describing the failure; (2) it provides a diagnosis
for where faults may reside in the code, which brings an

© © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The definitive Version of Record was published as: F. Servant and J. A.
Jones, " WhoseFault: Automatic developer-to-fault assignment through fault localization," 2012 34th International Conference on Software
Engineering (ICSE), Zurich, Switzerland, 2012, pp. 36-46, DOI: https://doi.org/10.1109/ICSE.2012.6227208

additional saving of developer time, due to more directed
fault-finding tasks; (3) it assesses developer expertise not
only in the faulty code, but also in other areas of the source
code which interact with it, in order capture knowledge
about the context of the fault.

Our approach leverages source-code history that can
be found in revision-control systems and fault-localization
techniques that point to locations in the source code that
are likely faulty. From the source-code history, we capture
every change to each line of code, the type of that change,
the time of the change, and who made the change. Our
technique couples this history information with the diagnosis
information about the location of faults in the source code
from automated fault-localization techniques. Our expertise
assessment algorithm combines these two pieces of infor-
mation to provide a ranked list of developers in terms of
expertise in these locations.

Suggesting a list of ranked developers instead of a single
expert developer is a common practice in expertise finding
techniques and it has a series of advantages. The most
obvious one is that if the person in the first position of the
rank is unavailable, we can assign the next person in the list
for the resolution of the fault. Additionally, we envision a
benefit of automatically suggesting collaborators or mentors
for fixing faults. Examples of such situations include faults
that involve cross-component logic or the introduction of a
new developer who will need guidance from an existing and
knowledgeable superior.

The main contributions of this paper are:
• A novel approach for developer-to-test-case assignment

that uses the results of fault-localization techniques
and the source-code history of a software system.
This approach is applicable for use with any fault-
localization technique and any source-code history-
mining technique. To our knowledge, our technique is
the first to assign developers to failing test cases.

• Experimental designs that enable the evaluation of fu-
ture developer-to-fault assignment techniques and their
constituent components. The first experiment evaluates
the effectiveness of the automated technique to predict
assignments made by real developers. The second ex-
periment compares the effectiveness of the automated
technique to a simple technique that only considers
the distribution of commits over the source code. The
last experiment gauges the influence of the separate
components that comprise the technique under evalu-
ation. These experiments evaluate the effectiveness of
the automated technique to predict assignments made
by real developers.

• An implementation of our approach, WHOSEFAULT,
and its evaluation, which (1) demonstrates that it can
effectively recreate historical assignment choices made
by real developers; (2) shows that WHOSEFAULT im-
proves the results of a simple technique which only

considers the distribution of commits over the source
code; and (3) reveals the influence of the three com-
ponent techniques on our experimental results. In this
evaluation, we show that our expertise algorithm im-
proves upon an existing expertise assessment technique.

II. RELATED WORK

To provide the necessary background to motivate and
explain our technique, we first overview three areas of re-
lated work: source-history mining (Section II-A), expertise-
finding techniques (Section II-B), and automated fault-
localization techniques (Section II-C).

A. Source-History Mining

In order to track the history of individual lines of code,
Zimmerman et al. [35] proposed annotation graphs. Anno-
tation graphs are multipartite graphs in which each “part”
is represented as a column of nodes which represent lines
of code. Edges are drawn between line nodes to represent
their evolution. However, regions of contiguously changed
lines are only mapped at that region-level. These regions
of difference [26] introduce inaccuracies and imprecision.
Several researchers (e.g., [9], [29], [31], [33], [34]) have
investigated and proposed techniques that provide a finer-
grained mapping of lines of code between consecutive
revisions. We use such techniques in this work to provide a
precise history of the evolution of each line.

B. Expertise-Finding Techniques

Existing work in the area of automatically determining
developer expertise generally falls into two categories: (1)
those that leverage the natural-language bug reports in a bug-
tracking system to assign a developer, and (2) those that can
identify the most knowledgeable developer given a location
in the source code.

1) Bug-Report Expertise: The existing work that assigns
a developer to a bug report (e.g., [3], [16]) utilizes the
natural-language terms from the bug reports. The history of
which developers were assigned to past bug reports that also
used the same terms as in a current bug-report description is
used to guide the selection. Such approaches do not use any
information about the source code or test-case behavior other
than the description of the input and symptoms described
inside the bug report.

A number of researchers have investigated this area
of using natural-language analyses (e.g., [2]–[4], [7], [8],
[10], [16], [24]). Regarding effectiveness, Anvik et al. [3]
achieved a precision between 57% and 64% when suggesting
up to three developers for a bug report, and Jeong et
al. [16] improved these results with additional historical
bug reassignment information to achieve precision of up to
68% when suggesting three developers. Other similar but
divergent techniques include: Matter et al. [28], who assign
developers to bug reports based on the text of the bug reports

and developer-supplied expertise profiles; Kagdi et al [19],
who link change requests to a source-code location using
natural-language similarities between the change requests
and source code, and then find expertise based on those
locations; and Baysal et al. [5], who combines several factors
such as natural-language matching and current developer
workload to inform their recommendations.

These techniques also rely upon past and current bug
reports to exist, to be well written, and to contain enough
description to perform a sufficient matching. Moreover,
even with well-written and descriptive bug reports, these
techniques are sensitive to word and phrasing choices made
by the various bug-report contributors. One bug-report con-
tributor may refer to terms such as “GUI,” while others
may refer to “user interface,” “presentation,” and “window.”
Additionally, these approaches are incapable of providing
suggestions of where in the code the fault may reside.

2) Source-Code Expertise: Another area of existing work
automatically selects a developer who has expertise in a
specific area of the code. In these techniques, a person
chooses a location in the source code, and the technique
is able to assess the developer who has the most expertise
for that location. This work mines the history of the source
code, capturing all changes to the system and the developers
who make those changes.

A number of researchers have investigated this area
of mapping “expert” developers to components of source
code (e.g., [12]–[14], [18], [25], [27], [30]). Each such
research endeavor has examined different factors in mapping
developers to components. For example, McDonald and
Ackerman [25] suggest that the developer who most recently
changed a file is the expert for the entire file, and Mockus
and Herbsleb [27] suggest that the expert is the developer
who made most changes to a file. Another example includes
Fritz et al. [13] who additionally consider factors such as
frequency of reading the code.

If such techniques were to be applied to finding the most
appropriate developer to fix a fault, they would require that
a person can determine which parts of the program are
faulty, which is a task that, itself, requires specific expertise.
Moreover, the granularity of such approaches is typically
at the file, class, or method level — tracking developer
expertise by method or by file instead of tracking it for a
set of lines of code, which could be located in different
parts of the system. Also, these approaches can only point
to the developers that have expertise in one particular area
of code at a time — that is, they do not take a number of
locations that may be related in some way and determine
the developer who has the best expertise across this group.
For example, for a single location, developer A may have
the most expertise, and for another location, developer B
may have the most expertise. However, if we are seeking
the developer who has the most expertise in both of those
locations, developer C may be the best choice.

Localize
Faults

Mine
History

Assess
Expertise

Test Cases

Source
Locations

Instruction
Lineage

Source Code Repository

Developers

Figure 1. Process diagram of our technique.

C. Automatic Fault Localization

To provide an approach that has benefits of each of these
classes of expertise assessment, while ameliorating their lim-
itations, we utilize automated fault-localization techniques.
Specifically, in this presentation, we will leverage statistical,
coverage-based techniques. However, any fault-localization
techniques can be utilized as long as it locates areas in the
code that are determined to be likely to cause failure.

To inform the locations in the program where to query
developer expertise, we will utilize a statistical, coverage-
based fault-localization technique. A number of such tech-
niques have been proposed by researchers (e.g., [17], [22],
[23]). These techniques utilize information gathered about
the internal behavior of the software. For example, one such
technique, TARANTULA, analyzed the correlation between
instruction execution and failing test cases. The intuition
is that instructions that are executed primarily by failing
test cases are more suspicious of being the fault causing
those failures than instructions that are primarily executed
by passing test cases. TARANTULA assigns a suspiciousness
score to each instruction in the program according to this
correlation.

Such a statistical, coverage-based fault-localization tech-
nique is used to identify areas of high suspiciousness that
we can query for developer expertise. In the next section, we
describe how the results from fault-localization techniques
can be utilized to identify expertise in finding developers
best suited for the debugging task.

III. APPROACH

In order to assign a developer to a failing test case,
we follow three main steps to produce a list of the most
suited developers to fix the fault represented by it. First,
we utilize a fault-localization technique to determine the
likely locations of the fault. In parallel, we mine the source-
code repository to leverage its history — determining for
every individual instruction, its lineage and all the developers
that were instrumental in its development. Utilizing the
results of the fault-localization technique, we weigh both
the suspiciousness of each instruction and the developers
who have knowledge about them to produce a list of

candidate developers, with a measure of expertise. This list
of developers is then suggested as the best candidates to fix
the fault represented by the test case. Figure 1 shows these
steps. The following sections describe them in more detail.

A. Localize Faults

The first step of our approach consists of utilizing a fault-
localization technique to determine the areas of the source
code that will most likely need to be modified in order to fix
the fault. Any fault-localization technique can be utilized to
assess which locations are suspicious of causing failures. We
can utilize approaches that identify a subset of the program
(such as a slice) or approaches that assess a degree of
suspiciousness for each component. In our implementation
(and evaluation in Section IV), we use TARANTULA [17].

As a consequence of using a statistical, coverage-based
fault-localization technique like TARANTULA, our approach
takes as its input the coverage of a test case (or test cases)
that tests for a fault. The coverage of a test case contains
all the locations in the source code that were executed by
the test case. We define a location in the source code as an
executable line of code.

Once we have collected the coverage for all test cases,
we can use the fault-localization technique. We use as
input the coverage of the failing test case together with
the coverage of all the passing test cases in the test suite.
As a result, the fault-localization technique will return a
suspiciousness value for all the locations in the source code.
This suspiciousness value represents how likely a location
is to contain the fault — these values range from 0 for the
lowest suspiciousness to 1 for the highest suspiciousness.
The set of all locations in the source code with their
suspiciousness value is one of the inputs for the last step
of our approach.

B. Mine History

As well as the localization of the fault, our approach uses
the history of the source code in order to find the most suited
developers to fix a fault. Therefore, we also mine the entire
history of a software project to determine the lineage of each
individual instruction in the code.

Previous expertise-finding projects (e.g. [12], [13], [25],
[27]) suggest experts for software artifacts at the method-
level or higher levels. We, however, choose a fine-grained
level for mining, since it directly maps to the results of our
fault-localization technique, and as such is likely to give
a more precise expertise assessment. Therefore, we mine
changes in the source code at the individual-instruction level
by building a history graph [31] for the software project. A
history graph is a variation of an annotation graph [35]. An
annotation graph is a multipartite graph in which each part
represents a revision of a file in the source code, and each
node in a part represents a line of code in that revision.
In a history graph, each node is labeled with the action

that produced it and is linked to only one other node in
the previous revision.

In order to build the history graph, we first collect the
meta-data (including authorship and commit time) for all
of the revisions that the repository contains for each file
belonging to the software project. We then compare each
revision of each file with its previous revision in time by
using the annotate and diff features of the source code
repository. We use the results of this comparison to map a
line in each specific revision of a file with its corresponding
line in the previous revision of the file.

However, the output of diff is not a perfect line to line
correlation. Since diff uses a textual difference algorithm,
it returns regions of difference called hunks [26]. Figure 2
shows a modification hunk in which line 2 was changed to
become the region that now spans lines 2 to 4.

2c2,4
< i = 0;

> j = 2;
> i = 5;
> x = i + j;

Figure 2. Modification hunk.

By observing Figure 2, we realize that line 2 in the
old revision was actually modified to become line 3 in the
new revision, and that lines 2 and 4 were added. In order
to provide this finer-grain mapping for lines between two
revisions, we use the line mapping technique proposed by
Williams and Spacco [34] for all modification hunks. We
first obtain each possible pair of one line in the old revision
and one line in the new revision. Then, we assign a weight
to each of the pairs equal to their Levenshtein distance [21].
After that, we apply the Kuhn-Munkres algorithm [20] to
obtain the set of pairs with optimal global similarity score.
Finally, we use a threshold over the Levenshtein distance
of each of the selected pairs. Previous work (e.g., [9], [34])
has determined the adequacy of a standard threshold of 0.4
for this purpose, which we also use. If the distance of an
assigned pair is lower than the threshold, we classify them
as a changed line. If their distance is higher than than the
threshold, we classify the old line as being deleted and the
new one as being added. Figure 3 illustrates an example of
a small history graph.

C. Assess Expertise

In the third step of our approach, we combine the sus-
piciousness information described in Section III-A with the
history of the source code described in Section III-B in order
to infer the most experienced developers in the suspicious
locations of the code.

In order to determine the expertise of a developer in a
particular line of code, we consider two aspects that we

}

}

...

...

...

...

Version 1.0
Sally

Version 1.1
Sally

Version 1.2
Ed

Version 1.3
Sally

Legend
Evolution of an instruction

Unchanged instruction

Changed instruction

Added instruction

Deleted instruction

public void run() {
1

}
2

public void run() {
1

 i = 0;
2

public void run() {
1

 j = 2;
2

public void run() {
1

 j = 2;
2

 i = 5;
3

4

 i = 5;
3

 x = i + j;
4

}
3

5

Figure 3. Example of a small history graph.

estimate to be the most important: amount of changes and
recency of changes for that developer in that line of code.
Our intuition is that, as a developer makes more changes to
a line of code, he or she becomes more familiar with it. This
intuition has already been expressed and verified by other
authors [14]. Additionally, we consider that developers will
be most familiar with their most recent changes, and less
familiar with less recent changes. This intuition has also
been previously identified by other authors [13], [24].

We then define the recency of a change c as such:

recencyc = 1− today − datec
today − beginning date

=
datec − beginning date
today − beginning date

(1)

In Formula 1, the recency of the change c is the amount
of time that has passed since the beginning of the software
project until the change was committed, compared to the
total age of the software project. We calculate the recency
metric as a distance from the beginning of the project (as
opposed to a distance from now) so that an increase in
time from the change to now is reflected as a decrease in
the recency metric. The recency value ranges from 0 to 1.
Figure 4 depicts the recency calculation.

Time

Recency

0 10.8
Beginning of
software project

Change Today

Figure 4. Depiction of the calculation of the recency metric. The value of
the recency metric increases as the difference of the change date and now
decreases.

Once recency has been defined, Formula 2 represents the
expertise of a developer for fixing a fault. We define the
expertise value of a developer d for fixing a fault as the sum
of the recency of all changes cd,l made by that developer
d to any suspicious line l in the source code, multiplied by
the suspiciousness value of that line. In this formula, we
reward the suspiciousness of lines, recency of changes and
amount of changes. As any of these variables increases, the
total expertise value of a developer also increases.

expertised =

M∑
cd,l=1

N∑
l=1

recencycd,l × suspiciousnessl

(2)
We implement our expertise algorithm by first applying

history slicing [31] to the set of suspicious lines returned by
the fault-localization step. Thus, we walk the history graph
that we built during the mining of the source-code repository,
obtaining all the equivalent lines to the suspicious lines in
all the past versions of the software project in which they
were modified. Finally, we apply Formula 2 to this output
in order to obtain an expertise score for each developer that
made changes to the suspicious lines.

This expertise metric produces values for each developer
for a given program and fault-localization diagnosis. The
value of this metric for a specific developer is only mean-
ingful relative to the values of the metric for the other
developers — we only use it as a means to compare the
relative expertise of all developers for a specific bug. Once
Formula 2 has been applied for all developers, they are
sorted from highest to lowest expertise value. The developer
in position 1 of the list is the most appropriate to be in
charge of fixing the fault, according to our technique. The
next most appropriate developer is in position 2, and so on.
Developers that did not make any changes to the suspicious
lines of code (and therefore have no expertise value) are not
included in the list.

IV. EVALUATION

To evaluate our technique for automatic developer as-
signment to test cases, we implemented it in our tool
WHOSEFAULT and conducted two experiments over a real-
world project. With these experiments, our goal is to answer
the following research questions:

RQ1: How often does the automatic assignment of de-
velopers to test cases find the right developer and
in which position?

RQ2: How much does our automatic technique improve
over a naı̈ve approach?

RQ3: How does each component of our automatic tech-
nique affect its results?

A. Experimental Subject

In order to perform our evaluation, we need access to
a software project’s test cases and source-code repository.
First, we need a test suite to execute for any revision of
the software and identify the test cases that fail. Second, we
need a source-code repository to mine the entire history of
the project and obtain the history of every line of source
code as described in Section III-B.

We selected the AspectJ open-source project [1] as the
subject for our experiments, since it provides access to both
of the previously mentioned resources. AspectJ is an aspect-
oriented extension to the Java programming language. We
mined the source code history of AspectJ and extracted
10,454 revisions, which had been created over 8.5 years of
development. We also extracted AspectJ’s test suite, which
contained an average of 1,585 test cases per revision.

To assist in the selection, compilation and execution of
test cases, we utilized the iBugs project [11]. The iBugs
project processes the bug-tracking system and source-code
repository of a software project in order to identify the
source-code changes that fixed a bug and the test cases that
were committed with those changes. Its original purpose is
to determine the changes that fixed bugs in real software
projects in order to provide an oracle to benchmark fault-
localization techniques.

B. Experimental Setup

In order to perform our experiments, we need a set of
failing test cases and an oracle to tell us who is the developer
with the most expertise to fix the fault represented by each of
them. We select this set of failing test cases by exploring the
source-code repository of AspectJ and identifying committed
changes that fixed the fault represented by a test case. We
refer to these changes as the fix for that failing test case. We
use the developer who committed the fix to the source code
repository as the oracle for who is the developer with most
expertise to fix the fault represented by a test case. We refer
to this developer as the expert for the test case.

In order to identify committed changes that fix a failing
test case, we used the iBugs project. iBugs reports 350 bugs

for AspectJ and the changes committed to its source code
repository that fixed each of these bugs. iBugs also provides
the revision of the source code of AspectJ just before (pre-
fix) and just after (post-fix) each of the bug-fixing changes
was committed to the source code repository. These bug-
fixing changes often include a test case to test for the bug
in the future. Therefore, we can expect some failing test
cases in a pre-fix revision to become passing test cases in
the post-fix revision.

We selected our set of failing test cases from the 350
pre-fix revisions of AspectJ provided by iBugs. We copy
the test suite from each of the post-fix revisions to their
corresponding pre-fix revision. Then, we execute the test
suite in both the pre-fix and post-fix revisions. Finally, we
select all test cases that fail in the pre-fix revision and
pass in the post-fix revision as candidate test cases for
our experiments. The expert for each of these test cases
is the developer who committed the bug-fixing changes for
their corresponding pre-fix revision. Out of the 350 pre-fix
revisions reported by iBugs, 245 contained test cases that
fail in the pre-fix revision and pass in the post-fix revision.

In order to be able to use a fault-localization technique,
we apply a source-code instrumenter (Cobertura) over each
compiled pre-fix revision. This is so that we can capture the
coverage of each test case when running the test suite. We
performed the instrumentation over the 245 pre-fix revisions
that contained test cases that fail in the pre-fix revision and
pass in the post-fix revision. In 34 of these pre-fix revisions,
the instrumentation process failed for the files involved in
the fix for the failing test cases. This happened because the
fixes were contained in a library that had been compiled
without debugging information, and the source code was
not available. This situation is similar to using test cases
that test third-party libraries, for which neither debugging
information or source code is available. Our approach is
not applicable to such situations, because if the faulty
source code were not available to the parties performing the
instrumentation, they could neither instrument nor fix the
fault. As a consequence, we discarded these 34 revisions.

Finally, we executed the test suite on the 211 remaining
pre-fix revisions for which we could successfully instrument
the files involved in the fix. We also executed the test
suite on their corresponding post-fix revision. Some failing
test cases did not produce coverage information, because
they crashed as soon as their execution started. We cannot
provide a developer recommendation for these test cases,
since they practically do not interact with the source code
of the application.

Thus, we selected as candidate test cases for our experi-
ments a total of 889 test cases, which: (1) failed in one of the
211 pre-fix revisions, (2) passed in its corresponding post-fix
revision, and (3) produced some coverage information.

For each individual candidate failing test cases, we applied
a fault-localization technique to its coverage plus that of all

the passing test cases. As a result of this step, we obtained,
for each individual failing test case, a suspiciousness value
for each line of code. In parallel, we mined the source-
code history of the project as explained in Section III-B and
obtained the history of each line of code. Afterward, we ran
our expertise algorithm and stored the expertise value for
each candidate developer for each test case.

Then, we ranked the list of developers in terms of
expertise values, from highest to lowest, which was our
prediction for each failing test case. If the actual developer
who fixed the failing test case (the author that committed the
changes that fixed it) was within the top-ranked developers,
we considered our approach successful.

C. Experimental Variables

The primary object of our experiments is to assess the
degree to which our technique automatically selects the
developer that actually fixed a failing test case, according
to historical record. To this end, we assess the position in
the ranked list of developers for the actual developer that
wrote and committed the changes that fixed the failing test
case. A position of “1” in our ranked list indicates that our
technique precisely chose the correct developer according
to the commit log of the version-control system. We also
evaluate the further positions in the ranked list: a position
of “2” in our ranked list indicates that we chose the correct
developer within the top two positions; and, so on. We
note here that our assessment of the “correct” developer is
based on the actual developer that wrote and committed the
changes that fixed the failing test case, which is an undoubt-
edly subjective and imperfect measure of true expertise. The
developer with the greatest expertise in a particular failing
test case could have been busy working on other tasks,
on vacation, or otherwise unavailable. In addition, other
developers could have volunteered to fix failing test cases to
learn more about the project. Nonetheless, we believe using
the historical artifact as our oracle for the correct assignment
is a reasonable one as it was chosen by the people most
knowledgeable about the project — the actual developers.

D. Experiment 1

For our first experiment, we mined the source-code history
at the line level, using the Levenshtein distance for our line-
mapping technique. Then, we used the TARANTULA fault-
localization technique and our expertise algorithm for the
889 test cases that we identified as candidates. After running
the experiment, we obtain the results in Figure 5.

These results show that WHOSEFAULT identifies the ex-
pert in the first position of its ranked list for 35.21% of the
failing test cases that we studied. This result increases up
to 50.17% when we consider the first two positions of the
suggestions and up to 81.44% when we consider the first
three. We considered as candidate developers all developers
who had committed changes to the source-code repository

1	 2	 3	 4	 5	 6	
Accuracy	 35.21%	 50.17%	 81.44%	 91.68%	 94.49%	 94.60%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Figure 5. Effectiveness of our developer assignment technique.

before the date of the pre-fix revision of the test case
considered. For each test case considered, WHOSEFAULT
considered an average of 8.2 candidate developers, with a
standard deviation of 2.3.

To put our results into context, consider that random
selection over all active developers would yield results of
only about 12%, 24%, and 36% (i.e., the probability of
randomly choosing the one correct developer out of an
average of 8.2 developers is 1/8.2 ≈ 12%, and so on).
Thus, the results of WHOSEFAULT provide a considerable
improvement over a random selection.

Note that, for 5.40% of the considered test cases, the
expert was not found inside the ranked list of developers.
In these cases, the person who fixed the failing test case
had not committed any changes to any of the suspicious
lines in the past. A possible explanation could be that our
fault-localization technique was not successful at finding the
context of the fault. Another possibility is that the person
who fixed the failing test cases was actually not the most
appropriate one, given that our oracle is not perfect. We
describe this and other threats to validity in Section V.

RQ1: Our automatic developer assignment technique finds the
expert within the top 3 candidate developers for 81.44% of
the considered test cases, which indicates that our automatic
recommendations can be valuable and accurate.

E. Experiment 2

In our second experiment, we compare the results of
our automatic technique to a baseline of the distribution of
expertise throughout the source code. By this comparison,
we check whether the success of our technique is due to
a skewed distribution of expertise. If a small number of
developers commit most changes to the source code history,
then any technique that depends on the amount of commits
made by a developer can be successful at finding the expert.
Such a scenario would imply that a technique based on
simply ranking all developers in terms of the amount of
commits that they made to the source-code repository would
obtain a high accuracy.

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	
WhoseFault	 35.21%	 50.17%	 81.44%	 91.68%	 94.49%	 94.60%	

Distribu<on	 of	 commits	 31.16%	 43.53%	 49.61%	 50.73%	 56.47%	 96.29%	 96.40%	 96.40%	 97.64%	 97.98%	 100.00%	

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

Figure 6. Effectiveness of our developer assignment technique, compared to the distribution of changes committed by developers.

We obtained the distribution of expertise by building a
simple technique that retrieves all developers who committed
changes to the source-code repository before the date of the
pre-fix revision of the test case. Then, it sorts this list of
developers in terms of the number of commits that each
developer made, from high to low.

We executed this simple technique for the 889 candidate
test cases. Figure 6 displays the accuracy obtained by this
simple technique in comparison with the results of our
automatic assignment-technique in WHOSEFAULT.

These results show that, when considering only the first or
the first two suggested developers, our automatic technique
provides more accurate results than the distribution of com-
mits technique by finding the expert in 4.05% and 6.64%
more test cases, respectively. Moreover, when considering
the first three, four, and five developers, our automatic
technique is more accurate at finding the expert for 31.83%,
40.95%, and 38.02% more test cases, respectively, than the
distribution of commits technique.

Our results also show a sudden increment in the accuracy
of the distribution of commits technique when the first
six developers are considered. Upon investigation of this
phenomenon, we discovered a significant number of failing
test cases were fixed within a relatively short period of time,
by a developer who was the sixth most active developer. As
a consequence, the accuracy of the distribution of commits
technique increases significantly when including the sixth
position. However, our automatic technique recommended
the correct developer at a higher position for these failing
test cases, because its localization algorithm causes it to
focus on a particular area of the code as opposed to the
distribution of commits technique, which considers equally
all parts of the entire program. Additionally, our automatic
technique weighs developer expertise according to our ex-
pertise formula, assigning higher importance to more recent
changes. This phenomenon demonstrates one strength of our
technique: its resilience to such uneven expertise and fault
distribution.

We should note that high accuracy obtained after consid-
ering more than four positions does not have a high impact,
given that an average of eight developers were considered
as candidates. Considering more than four positions would
mean, on average, considering more than 50% of the can-
didate developers. As such, although we can see that the
distribution of commits finds the expert for more test cases
than our automatic technique when considering the first six
suggested developers, we interpret these results to not have
a high impact, because it would mean having to consider
75% of the candidate developers.

Finally, for some test cases (5.40% in our experiment),
our automatic technique could not find the expert in any
of the suggested positions, which means that it could not
reach 100% accuracy, no matter how many positions were
considered. In contrast, the distribution of commits technique
always suggests all developers, which allows it to reach
100% accuracy, even if it means inspecting all positions in
its ranked list of developers (our experiment considered a
maximum of 11 candidate developers).

RQ2: Our automatic developer assignment technique performs
better than a naı̈ve approach based on the distribution of commits
among developers. It produces recommendations that are more
accurate (by at least 4.05%) when considering the top two
ranks, and remarkably more accurate when the recommendations
include between three and five developers (up to 40.95%).

F. Experiment 3

In our third experiment, we evaluated the influence over
our results of each of the individual steps that comprise
our approach. For that goal, we individually substituted the
techniques that we selected in each of the steps described
in Section III for a simple technique. Then, we collected
the results for each of these variations of our approach and
checked how much they vary in comparison with the original
configuration. The results of this experiment are displayed
in Figure 7. The WHOSEFAULT label represents the results
of our original configuration.

1	 2	 3	 4	 5	 6	 7	 8	
WhoseFault	 35.21%	 50.17%	 81.44%	 91.68%	 94.49%	 94.60%	

Mining	 file	 level	 33.75%	 49.94%	 61.75%	 74.24%	 95.50%	 96.40%	 96.51%	 96.85%	

Coverage	 35.55%	 49.49%	 81.10%	 92.24%	 94.49%	 94.60%	

Experience	 Atoms	 29.36%	 41.39%	 50.17%	 55.01%	 57.03%	 95.39%	 95.73%	 96.85%	

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

Figure 7. Effectiveness of different variants of our developer assignment technique, when each step is substituted by a simple one.

1) Mining History at the File Level: First, we substituted
our original technique of mining the history of the source-
code repository at the line-of-code level for a simpler
technique that retrieves changes in files, but does not store
which lines were modified by each change. Figure 7 displays
the results for this variation under the label Mining file level.

As a consequence of this modification, our expertise
algorithm includes any author that committed changes to any
of the files identified by the fault-localization technique as
suspicious, regardless of whether they modified suspicious
lines or any other lines of code. This is also represented
in the results by the fact that Mining file level finds the
expert for a higher number of test cases than WHOSE-
FAULT when considering all suggested developers (96.85%
vs. 94.60%, respectively). However, this advantage has low
impact, because it involves considering a high percentage of
the candidate developers (as described in Section IV-E).

The results obtained for the variant Mining file level,
although lower, are very similar to those obtained by our
original configuration, WHOSEFAULT, for the first one and
two positions. However, they are quite worse when we
consider the first three and four positions (by 19.69% and
17.44%, respectively). Therefore, we conclude that mining
the source code history at the line-of-code level is important
to achieve the results of our approach.

2) Coverage Fault Localization: In our second variant,
we substitute the TARANTULA fault localization technique
for a simpler technique that only captures those lines that
were executed by the failing test case and assigns the highest
suspiciousness level to all such lines. Since all the lines ex-
ecuted by the failing test case have the same suspiciousness
value, all of them acquire the same importance when they
are processed by our expertise technique. The results for this
variation are displayed in Figure 7 under the label Coverage.

In this case, the results for the variant Coverage are
practically the same as for WHOSEFAULT (less than 1%
difference in all positions). This result implies that the
suspiciousness value of the TARANTULA fault-localization
technique had little impact on the results of WHOSEFAULT,
beyond the coverage of the failing test cases that inform
it. As such, it seems that the passing test cases did not
significantly contribute to the results. We speculate that
unlike this evaluation in which only a single failing test case
was used, the inclusion of multiple failures may be helpful
to allow the suspiciousness metric to differentiate the failing
coverage, and thus improve the results. However, further
studies need to be performed to verify this hypothesis.

3) Experience Atoms: Finally, we substitute our exper-
tise algorithm with the simpler technique used by Exper-
tise Browser [27]. By this technique, the developer with
the highest amount of experience atoms is the expert for
a source-code entity. Experience atoms are measured by
atomic changes that a developer commits to the source-code
repository. We implemented this technique by obtaining all
developers who had committed changes in the source-code
repository to any of the suspicious files, and sorting them
by the number of commits that each developer made, from
high to low. We display the results of this variant in Figure 7
under the label Experience Atoms.

Our original configuration achieves much more accurate
results than those achieved by this variant (up to 37.46%
for the first 5 positions) in all positions, except for the case
of considering the first six developers suggested. Because
Experience Atoms is based on the distribution of commits
over a set of files, it shows the same peculiarities described
for the distribution of commits technique in Section IV-E.

Therefore, we can conclude that our original expertise
algorithm played an important role in our results. The
unique features of our original expertise algorithm that are

not included in the Experience Atoms approach are the
consideration of only commits that modified suspicious lines
and the measure of recency of each commit.

RQ3: The results obtained by our automatic developer-assignment
technique were mostly influenced by our expertise algorithm, and
also influenced by mining the history of the source code at the line-
of-code level, but not significantly influenced by the suspiciousness
values provided by the fault-localization technique.

V. THREATS TO VALIDITY

Threats to internal validity arise when factors affect the
dependent variables without the researchers’ knowledge. It is
possible that some implementation flaws could have affected
the results. However, we are confident in the correctness of
our results, given that we repeated our technique for 889
test cases, and the results were consistent among them. In
addition, we exercised diligence in testing and manually
checking our results at each step of the process.

Threats to external validity arise when the results of the
experiment are unable to be generalized to other situations.
In this experiment, we evaluated the technique on only one
program, and thus we are unable to definitively state that
our findings will hold for programs in general. However,
we conducted our experiment on a real project that is used
world-wide. The test cases on which we evaluated represent
actual faults with actual failures. The AspectJ project is
over eight-years old, of which the test cases that we used
spanned five years. The results may not generalize to other
programs, development teams and their practices, and test
cases. However, we have a strong evidence that our approach
has promise in practice.

Threats to construct validity arise when the metrics used
for evaluation do not accurately capture the concepts that
they are meant to evaluate. In our case, we measure the
location of the correct developer in a ranked list. However,
“correct” in our experiment is defined as the developer who
actually fixed the fault represented by the test case — this
could have been the developer performing the fix for any
number of reasons. For example, the second-best developer
could have been chosen because the most experienced
developer was unavailable; an inexperienced developer was
chosen because she wanted to learn about that function in the
code; or, simply the wrong choice was made by the person
doing the assignment. Nonetheless, the actual person chosen
by the people who know the most about the codebase (the
actual development team) is likely to be among the most
experienced, most of the time.

VI. CONCLUSIONS

In this paper, we presented a novel technique that automat-
ically assigns a developer to a fault, represented by a failing
test case. The technique is more automated than previous
techniques that relied upon a person to first determine the

location in the codebase that needed an expert. It also works
at a finer level of granularity — at the individual line level.
The technique is more automated than previous techniques
that relied upon well-written and consistent bug reports to
describe the witnessed failures to find an expert. In addition,
we provide a diagnosis of the locations in the code for the
expert developer to begin her search for the fault.

We implemented our approach in a tool called WHOSE-
FAULT and demonstrated its effectiveness on a well-known,
real-world application that has been in active development
for over eight years. Our results show that WHOSEFAULT
chooses the correct developer in the first suggested position
for 35% of the test cases studied, for 50% when considering
the top two positions, and for 81% when considering the top
three positions.

We also evaluated WHOSEFAULT against a simple distri-
bution of the commits performed by each developer to check
whether our results are caused by a skewed distribution of
commits over the source code. WHOSEFAULT improved by
a difference between 4% and 40% the results obtained by
a simple technique that sorts the developers in terms of
number of commits performed in the source-code repository.

Finally, we explored the influence of each of the compo-
nents of our approach over its results. We found that our
results were mostly influenced by our expertise algorithm
and moderately influenced by the algorithm that we chose
to mine the history of the source code. We also found
that the fault-localization technique that we utilized did not
have a high influence in our results. As a consequence, we
found that, by using a simpler fault-localization technique,
which utilizes only the coverage of the failing test case,
we could retain our effectiveness and require less input and
potentially less runtime overhead. As part of this experiment,
we also compared our expertise algorithm against an existing
expertise assessment technique and found that our algorithm
provided greater accuracy, by up to 37%.

We envision WHOSEFAULT being used with automated
regression-testing or continuous-integration environments,
for use as: (1) a recommendation for which developer to
assign, (2) a guide for the eventually assigned developer
to find other experts to consult and collaborate, and (3) a
diagnosis for areas to explore during the debugging process.

In the future, we will expand our studies to additional
subjects and test cases. We also intend to experiment with
applying different techniques in each of the components of
our approach — using different line-mapping techniques,
fault-localization techniques, and expertise techniques —
and using multiple failures to inform the approach.

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-
tional Science Foundation under award CCF-1116943, and
by a Google Research Award.

REFERENCES

[1] AspectJ. http://www.eclipse.org/aspectj/.
[2] J. Anvik. Automating bug report assignment. In International

Conference on Software engineering, pages 937–940, 2006.
[3] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this

bug? In International Conference on Software Engineering,
pages 361–370, 2006.

[4] J. Anvik and G. C. Murphy. Determining implementation
expertise from bug reports. In International Workshop on
Mining Software Repositories, 2007.

[5] O. Baysal, M. Godfrey, and R. Cohen. A bug you like: A
framework for automated assignment of bugs. In Interna-
tional Conference on Program Comprehension, pages 297 –
298, 2009.

[6] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,
and T. Zimmermann. What makes a good bug report? In
Foundations of Software Engineering, pages 308–318, 2008.

[7] G. Canfora and L. Cerulo. How software repositories can help
in resolving a new change request. In Workshop on Empirical
Studies in Reverse Engineering, 2005.

[8] G. Canfora and L. Cerulo. Supporting change request assign-
ment in open source development. In ACM Symposium on
Applied computing, pages 1767–1772, 2006.

[9] G. Canfora, L. Cerulo, and M. D. Penta. Identifying changed
source code lines from version repositories. In International
Workshop on Mining Software Repositories, pages 14–21,
2007.

[10] D. Cubranic. Automatic bug triage using text categoriza-
tion. In International Conference on Software Engineering &
Knowledge Engineering, pages 92–97, 2004.

[11] V. Dallmeier and T. Zimmermann. Extraction of bug local-
ization benchmarks from history. In International Conference
on Automated Software Engineering, pages 433–436, 2007.

[12] T. Fritz, G. C. Murphy, and E. Hill. Does a programmer’s
activity indicate knowledge of code? In Foundations of
Software Engineering, pages 341–350, 2007.

[13] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill. A degree-
of-knowledge model to capture source code familiarity. In
International Conference on Software Engineering, pages
385–394, 2010.

[14] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How de-
velopers drive software evolution. In Workshop on Principles
of Software Evolution, 2005.

[15] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy.
“Not my bug!” and other reasons for software bug report
reassignments. In Computer Supported Cooperative Work,
2011.

[16] G. Jeong, S. Kim, and T. Zimmermann. Improving bug
triage with bug tossing graphs. In Foundations of Software
Engineering, pages 111–120, 2009.

[17] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of
test information to assist fault localization. In International
Conference on Software Engineering, pages 467–477, 2002.

[18] H. Kagdi, M. Hammad, and J. Maletic. Who can help me
with this source code change? In International Conference
on Software Maintenance, pages 157 –166, 2008.

[19] H. Kagdi and D. Poshyvanyk. Who can help me with this
change request? In International Conference on Program
Comprehension, 2009.

[20] H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2(1-2), 1955.

[21] V. I. Levenshtein. Binary codes capable of correcting dele-
tions, insertions and reversals. Soviet Physics Doklady, pages
707–710, 1966.

[22] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In Programming Language
Design and Implementation, PLDI ’05, pages 15–26.

[23] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober:
statistical model-based bug localization. In Foundations of
Software Engineering, pages 286–295, 2005.

[24] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug reports
using a vocabulary-based expertise model of developers. In
International Working Conference on Mining Software Repos-
itories, pages 131–140, 2009.

[25] D. W. McDonald and M. S. Ackerman. Expertise recom-
mender: a flexible recommendation system and architecture.
In Computer Supported Cooperative Work, pages 231–240,
2000.

[26] W. Miller and E. W. Myers. A file comparison program.
Software: Practice and Experience, 15(11):1025–1040, 1985.

[27] A. Mockus and J. D. Herbsleb. Expertise browser: a quan-
titative approach to identifying expertise. In International
Conference on Software Engineering, pages 503–512, 2002.

[28] M. M. Rahman, G. Ruhe, and T. Zimmermann. Optimized
assignment of developers for fixing bugs an initial evaluation
for eclipse projects. Empirical Software Engineering and
Measurement, 0:439–442, 2009.

[29] S. P. Reiss. Tracking source locations. In International
Conference on Software Engineering, pages 11–20, 2008.

[30] D. Schuler and T. Zimmermann. Mining usage expertise from
version archives. In International Working Conference on
Mining Software Repositories, pages 121–124, 2008.

[31] F. Servant and J. A. Jones. History slicing. In International
Conference on Automated Software Engineering (ASE), pages
452–455, 2011.

[32] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen.
Fuzzy set and cache-based approach for bug triaging. In
Foundations of Software Engineering, 2011.

[33] C. Williams and J. Spacco. Szz revisited: verifying when
changes induce fixes. In Workshop on Defects in large
software systems, pages 32–36, 2008.

[34] C. C. Williams and J. W. Spacco. Branching and merging
in the repository. In International Working Conference on
Mining Software Repositories, pages 19–22, 2008.

[35] T. Zimmermann, S. Kim, A. Zeller, and E. J. Whitehead, Jr.
Mining version archives for co-changed lines. In International
Workshop on Mining Software Repositories, pages 72–75,
2006.

	Introduction
	Related Work
	Source-History Mining
	Expertise-Finding Techniques
	Bug-Report Expertise
	Source-Code Expertise

	Automatic Fault Localization

	Approach
	Localize Faults
	Mine History
	Assess Expertise

	Evaluation
	Experimental Subject
	Experimental Setup
	Experimental Variables
	Experiment 1
	Experiment 2
	Experiment 3
	Mining History at the File Level
	Coverage Fault Localization
	Experience Atoms

	Threats to Validity
	Conclusions
	Acknowledgements
	References

