
History Slicing
Francisco Servant

Department of Informatics
University of California, Irvine
Irvine, CA, U.S.A. 92697-3440

fservant@ics.uci.edu

James A. Jones
Department of Informatics

University of California, Irvine
Irvine, CA, U.S.A. 92697-3440

jajones@ics.uci.edu

Abstract—To perform a number of tasks such as inferring
design rationale from past code changes or assessing developer
expertise for a software feature or bug, the evolution of a set
of lines of code can be assessed by mining software histories.
However, determining the evolution of a set of lines of code is
a manual and time consuming process. This paper presents a
model of this process and an approach for automating it. We
call this process History Slicing. We describe the process and
options for generating a graph that links every line of code with
its corresponding previous revision through the history of the
software project. We then explain the method and options for
utilizing this graph to determine the exact revisions that contain
changes for the lines of interest and their exact position in each
revision. Finally, we present some preliminary results which show
initial evidence that our automated technique can be several
orders of magnitude faster than the manual approach and require
that developers examine up to two orders of magnitude less code
in extracting such histories.

I. INTRODUCTION

Information overload is a problem with which most software
developers have to cope today. Therefore, many techniques
have been developed in order to reduce the amount of in-
formation that developers need to process in order to carry
out software engineering tasks. One example is program
slicing [15], which reduces the search space of the lines of
code that developers need to inspect when debugging to only
those that are included inside the program slice. A program
slice [16] represents the mental abstractions that developers
create of interrelated lines of code, according to the flow of
data, during the debugging process.

A different kind of task is that in which a developer is
interested in exploring the history of a set of lines of code
in order to understand why a code feature has evolved in a
certain way. Even though Software Configuration Management
(SCM) systems use a high diversity of version models [5], [10]
and tools to operate with them [12], they still do not provide
an automated way to perform this operation. Developers have
to go through a tedious process of inspecting every past
revision of each file that contains modifications to the lines of
interest. Also, they need to determine, for each past revision,
which lines of interest changed and, if so, identify which lines
correspond to their previous contents.

We model in history slicing the process through which
developers select the subset of the history of the software
project which is relevant for the lines of interest. The history
slice for a set of lines of code of interest (i.e., slicing criterion)

contains all their equivalent lines of code in all the past
revisions of the software project in which they were modified.

The goal of a history slice is to provide a reduced amount
of information about the history of a set of lines of code. In
the same way that program slicing selects the interesting areas
of the code in the dimension of space, history slicing selects
the interesting revisions of the code in the dimension of time,
as well as selecting the appropriate lines of code in each of
those revisions in the space dimension.

In this paper, we define the concept of a history slice, and
provide an approach for its automatic computation, which not
only reduces the information overload to relevant revisions
(time) and lines of code (space), but also drastically reduces
the time it takes for computation.

II. APPLICATIONS

We envision history slicing being used for a high diversity of
applications. First, we focus on history slicing being applied
to program understanding. Some of the questions asked by
novices might be answered by looking at how code was
implemented in the past. Also, knowing exactly how many
times some lines of code were modified and in which way
should help novices understand how the code evolved into the
current implementation.

History slicing allows slicing criteria to be composed of
sparse lines of code that encompass multiple files, which also
enables new applications of looking at the history of lines of
code, which probably were not previously pursued manually
because it was too time consuming. For example, when a bug
may be fixed by modifying one of multiple methods, having
the history slice for all of them should help to decide which
method to modify. The assumption being that it is probably
riskier to modify older code.

History slices may also be used as the input to be consumed
by another algorithm, therefore allowing more complex analy-
ses over the history of a set of lines of code. For example, we
could gather statistics about how often a set of lines of code
are changed, and by who. We could also find who has made
the most modifications to a set of lines in order to identify that
person as the expert in that block of code, which can inform
who should be consulted when questions arise regarding that
code.

Studying the evolution of lines which we know were fixed in
the past will probably help us in the study of three things: how

© © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. The definitive Version of Record was published as: F. Servant and J. A. Jones, "History
slicing," 2011. 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA, 2011, pp. 452-455, DOI:
https://doi.org/10.1109/ASE.2011.6100097

bugs are inserted, how bugs are fixed, and how bugs regress.
This might help us identify patterns of changes that have a high
potential to evolve into bugs. Also, we could gather patterns
of how complex bugs have been fixed in the past.

Finally, history slicing can also enable an automated tech-
nique to compute a list of all the people who have made
changes to sensitive areas of a project for legal matters.

III. BACKGROUND

This section describes a series of background techniques
upon which we rely for the construction of our approach. All
of these techniques can be applied in different ways to building
an abstract representation of the history of lines of code.

In order to track the history of individual lines of code, Zim-
merman et al., proposed annotation graphs [19]. Annotation
graphs are multipartite graphs in which each node represents
a line of code. Edges are drawn between nodes to represent
their evolution. Zimmerman et al. used the annotate feature
of an SCM and diff to create the annotation graphs. However,
diff often does not provide a precise or accurate line-to-line
match between two revisions.

Diff performs a textual analysis and returns regions of
difference between the two revisions of the file. These regions
of difference are called hunks [13]. Zimmerman et al. link all
lines in a modification hunk between the two revisions, but a
finer grained analysis would be needed to identify specifically
which lines in the older revision correspond to which lines in
the newer revision. This problem has been previously referred
to as line mapping by Williams and Spacco [17], and different
authors have provided different solutions for it.

Canfora et al. [4] propose a two step approach. In the first
step, they compare all ranges of code that exist only in the
previous revision to all ranges of code that exist only in the
newer revision to detect which ones should be mapped to each
other. The second step involves computing the Levenshtein
distance [9] between pairs of lines inside the ranges of code
classified as changed. This way, they iteratively classify each
pair of lines as changed or deleted/added, depending on
whether their Levenshtein distance is less than or greater than
a threshold, respectively.

A similar approach is followed by Williams and
Spacco [18]. First, they use DiffJ [2] to obtain the differ-
ences between revisions. Second, they solve the line mapping
problem by using the Kuhn-Munkres algorithm [8] to find the
mapping with the best similarity for all lines. Finally, they
mark as deleted/added those pairs which have a Levenshtein
distance lower than a threshold.

Reiss presented a comparison of multiple methods for line
mapping [14], which he defines as source tracking. While
all these approaches to line mapping use purely syntactical
comparisons of the source code, other researchers propose
utilizing models of the program [3], [11] for performing the
differencing of individual lines of code. More sophisticated
techniques even allow the detection of moved code [7], while
others are designed for specific languages or domains [6].

1. Build History Graph

SCM System

2. Select Slicing Criterion

3. Traverse History Graph

4. Represent History Slice

History Graph Slicing Criterion

Marked History Graph

History Slice

Developer or
Automated Analyses

Fig. 1: Approach to automatically compute a history slice.
Each step can be customized in a variety of ways.

IV. APPROACH

Utilizing the techniques and models presented in Section III,
we describe the approach to automatically computing history
slices. The process for its automatic computation leverages the
insights gained from the conceptualization of the annotation
graph as well as the techniques for computing line mapping.

The process, which is parameterizable, is depicted in Fig-
ure 1. We describe each step of the process in turn.

A. Build History Graph

The first step of our approach involves building a history
graph to represent the complete history of every line of code.
Like annotation graphs, a history graph is a multipartite graph
in which each part represents a revision of a file in the source
code. Each node in a part represents a line of code in that
specific revision of the file.

Unlike annotation graphs, in history graphs each node is
linked to only one node in the previous part and/or only
one node in the next part. Linkings of one node to many
are not permitted. Figure 2a shows a simple example of a
history graph. We represent modified lines with black nodes
and unmodified lines with white nodes.

In order to assign the edges between nodes of two con-
secutive revisions, we need to use a line mapping technique.
The decision about which line mapping technique to use
will depend on the application for which we are building
the history graph. For instance, the technique proposed by
Williams and Spacco [17] ignores non-executable lines in the
history, while the technique proposed by Canfora et al. [4]
allows the tracking of annotations, comments and other non-
executable code. Also, the technique by Apiwattanapong et al.
[3] detects movements of methods between files.

aucu

auu a

ud
a - added
u - unchanged
c - changed
d - deleted

a

uu

c

rv1.1rv1.2rv1.3rv1.4

(a)

acu

au a
d ac

rv1.1rv1.2rv1.3rv1.4

(b)

Fig. 2: History Graph (a). Collapsed History Graph (b).

940 if (environment == null...
941 List cps = buildCon..
942 Dump.saveFullCla...
943 String[] classpaths...
944 for (int i = 0; i < cp...
945 classpaths[i] = (Str...
946 }
947 environment = new...
948 state.setNameEnv...

651 List cps = buildCon...
652 Dump.saveFullCla...
653 String[] classpaths...
654 for (int i=0; i < cp...
655 classpaths[i] = (Str...
656 }

375 List cps = buildCon...

376 String[] classpaths...
377 for (int i=0; i < cp...
378 classpaths[i] = (Str...
379 } 376 }

rv1.156 rv1.134 rv1.60 rv1.14 rv1.1

Newest
version

Oldest
versionTime dimension

985 if (environment == null...
986 List cps = buildCon...
987 Dump.saveFullCla...
988 String[] classpaths...
989 for (int i = 0; i < cp...
990 classpaths[i] = (Str...
991 }
992 environment = new...
993 state.setNameEnv...
994 } else {
995 ((StatefulNameEnv...
996 state.deltaAddedC...
997 } 950 }

999 if (environment == null...
1000 List<String> cps = ...
1001 Dump.saveFullCla...
1002 String[] classpaths...
1003 for (int i = 0; i < cp...
1004 classpaths[i] = cps...
1005 }
1006 environment = new...
1007 state.setNameEnv...
1008 } else {
1009 ((StatefulNameEnv...
1010 state.deltaAddedC...
1011 }

rv1.162
Sp

ac
e

di
m

en
si

on

Fig. 3: History of lines 999–1011 from file AjBuildManager.java.

During the process of line mapping, each node is also
labeled according to the action that produced it for its par-
ticular revision, as can be seen in Figure 2a. These labels are
the mechanism that enables the detection of which revisions
should be part of the history slice when traversing the history
graph. However, other labels are also allowed in both nodes
and edges for different applications.

Finally, history graphs may also be collapsed, by joining
only changed nodes, i.e., skipping all unchanged nodes. Fig-
ure 2b depicts the collapsed version of Figure 2a. A collapsed
history graph improves the efficiency of the computation of
history slices. However, it also discards some information,
like the line number for unchanged lines. This choice must
be made with regard to the application and its need for such
potentially discarded information.

B. Select Slicing Criterion
The next step for computing a history slice is selecting the

slicing criterion, which represents the set of lines of interest
for which we intend to obtain the history. The slicing criterion
may be selected manually by a developer, or automatically by
a client analysis.

For example, the slicing criterion may be chosen as the
lines that were executed by a failing test case in order to
understand the failure, as the most suspicious lines according
to a semi-automated statistical fault-localization technique,
or all lines committed by a particular developer within a
particular window of time for potentially performing forensics.

C. Traverse History Graph
Once the slicing criterion is selected, we follow the history

path of every line in it towards their older revisions. Each set
of interconnected nodes in the history graph is a history path,
and it represents the history of a line of code. The history of
a line of code starts when it is added and finishes when it is
deleted or it belongs to the newest revision of the file. We can
compute two kinds of slices, depending on which nodes we
consider part of the history slice:

minimal: visited modified nodes.
extended: visited modified and unmodified nodes, for all

revisions in which there is at least one modified node.

Computing minimal history slices will be more efficient
when traversing a collapsed history graph. If the history graph
is not collapsed, we still visit unchanged nodes even though
we do not add them to the history slice. Note that, computing
extended history slices, where we add all nodes (modified or
unmodified) within a modified revision, is only possible with
uncollapsed history graphs.

In the process of traversing the history graph, nodes are
marked for inclusion into the slice according to the choice of
a minimal or extended history slice. Marked nodes will be
considered as part of the final history slice.

D. Represent History Slice

The final step of our approach is representing the history
slice in a suitable format for its purpose. Different applications
of the history slice will require different representations. For
example, a developer who is directly inspecting a history
slice to understand the evolution of certain features will
require a visual interface that displays whole files for each
revision included in the history slice, along with highlights and
mappings in the changed lines in each revision. Alternatively,
if the developer’s goal is merely to gather statistics of the
number of changes made on a set of lines, an abstract data
structure of the history slice is appropriate.

In summary, each of these four steps for computing a history
slice can be customized in a variety of ways. Each choice in
the approach may be influenced by the intended utility of the
history slice, and may affect the computed slice.

V. MOTIVATING EXAMPLE

This section introduces a motivating example which demon-
strates the application of history slicing. In this example
scenario, a developer is interested in understanding the set of
changes that led to a particular set of lines of code. Concretely,
she is examining lines 999–1011 in revision 1.162 of file
AjBuildManager.java in the AspectJ [1] open source project.

For this goal, the developer needs to find all the different
modifications that have been performed over those lines of
code through the history of the software project. This process
involves four key steps:

TABLE I: Preliminary Results
Slicing Criterion Size Approach Revisions Total Lines Seconds

10 Manual 5 272 1,919.00
10 Automatic 5 50 0.06

20 Manual 2 1,150 623.00
20 Automatic 2 40 0.17

50 Manual 4 365 1,637.00
50 Automatic 4 200 0.44

18 (non-contiguous) Manual 2 388 1,020.00
18 (non-contiguous) Automatic 2 36 0.04

1) Retrieve the previous revision r of the file.
2) Find inside revision r the lines corresponding to the lines

of interest.
3) Check the content of those lines and see if they were

modified.
4) If they were modified, save them. Loop back to Step 1.
If the developer is familiar with SCM functionality, she will

use capabilities provided by many of them, such as annotate.1

Annotate displays, for each line of a file, the revision in which
it obtained its current contents.

In Step 1, she could run annotate, then manually find in its
output the lines of interest, and note down the highest revision
r in which any of them was modified. Then, in Step 2, she
would have to retrieve r−1 and manually find in it the previous
states of the lines of interest. A shortcut for this step would
be to run diff over r and r− 1, although one would still have
to manually inspect the contents of diff. In Step 3, she would
manually check whether each of them was modified or not,
and record that information. Finally, our developer would run
annotate over r − 1 in order to obtain the next revision over
which to iterate, going back to Step 1.

Despite this partial automation, the four steps still involve
a high amount of interaction overhead with multiple tools,
making much of the effort quite tedious and manual.

In contrast, an implementation of history slicing will provide
our developer with the contents of all the lines of interest
in every revision in which they were modified in less than
one second and by running just one command. This result is
pictured in Figure 3 as an extended history slice.

VI. PRELIMINARY RESULTS AND FUTURE WORK

We implemented a prototype tool to perform history slicing
and ran a pilot experiment to estimate the savings provided by
it. We computed the history slice both manually and automat-
ically for some sample slicing criteria in the AspectJ [1] open
source project and measured the number of lines of code that
had to be inspected along with the time that was required to
compute them.

For the manual approach, we used cvs annotate and
cvs diff. We also took note of roughly how many lines
of code we needed to inspect and measured the time that
we invested in the process. Table I shows the results of this
experiment for slicing criteria of 10, 20 and 50 contiguous
lines, and a slicing criterion of 18 non-contiguous lines.

1Example annotate commands include cvs annotate, git
annotate, and svn blame.

These results show evidence that the automation of history
slicing can provide an improvement over a manual approach
up to two orders of magnitude in the lines needed to be pro-
cessed by the developer. Additionally, the automation requires
several orders of magnitude less time to compute.

In the future, we intend conduct an experiment with a
higher number of samples and with different implementations
to better evaluate the savings provided by history slicing, as
well as exploring how useful it could be when applied to other
applications.

VII. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable and
thorough comments. This material is based upon work sup-
ported by the National Science Foundation under award CCF-
1116943, and by a Google Faculty Research Award.

REFERENCES

[1] Aspectj. http://www.eclipse.org/aspectj/.
[2] Diffj. http://www.incava.org/projects/java/diffj/.
[3] T. Apiwattanapong, A. Orso, and M. Harrold. Jdiff: A differencing

technique and tool for object-oriented programs. Automated Software
Engineering, 14:3–36, 2007.

[4] G. Canfora, L. Cerulo, and M. D. Penta. Identifying changed source
code lines from version repositories. In Proceedings of the Fourth
International Workshop on Mining Software Repositories, MSR ’07,
pages 14–21, Washington, DC, USA, 2007. IEEE Computer Society.

[5] R. Conradi and B. Westfechtel. Version models for software configura-
tion management. ACM Computing Surveys, 30:232–282, June 1998.

[6] A. Duley, C. Spandikow, and M. Kim. A program differencing algorithm
for verilog HDL. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE ’10, pages 477–
486, New York, NY, USA, 2010. ACM.

[7] J. Hunt and W. Tichy. Extensible language-aware merging. IEEE
International Conference on Software Maintenance, 0:511–520, 2002.

[8] H. W. Kuhn. The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2(1-2):83–97, 1955.

[9] V. I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions and reversals. Soviet Physics Doklady, pages 707–710, Feb. 1966.

[10] B. Magnusson, U. Asklund, and S. Minör. Fine-grained revision control
for collaborative software development. In Proceedings of the 1st
ACM SIGSOFT Symposium on Foundations of Software Engineering,
SIGSOFT ’93, pages 33–41, New York, NY, USA, 1993. ACM.

[11] J. I. Maletic and M. L. Collard. Supporting source code difference
analysis. IEEE International Conference on Software Maintenance,
0:210–219, 2004.

[12] T. Mens. A state-of-the-art survey on software merging. IEEE
Transactions on Software Engineering, 28:449–462, 2002.

[13] W. Miller and E. W. Myers. A file comparison program. Software:
Practice and Experience, 15(11):1025–1040, 1985.

[14] S. P. Reiss. Tracking source locations. In Proceedings of the 30th
International Conference on Software Engineering, ICSE ’08, pages 11–
20, New York, NY, USA, 2008. ACM.

[15] M. Weiser. Program slicing. In Proceedings of the 5th International
Conference on Software Engineering, ICSE ’81, pages 439–449, Piscat-
away, NJ, USA, 1981. IEEE Press.

[16] M. Weiser. Programmers use slices when debugging. Communications
of the ACM, 25:446–452, July 1982.

[17] C. Williams and J. Spacco. Szz revisited: verifying when changes induce
fixes. In Proceedings of the 2008 Workshop on Defects in large software
systems, DEFECTS ’08, pages 32–36, New York, NY, USA, 2008. ACM.

[18] C. C. Williams and J. W. Spacco. Branching and merging in the
repository. In Proceedings of the 2008 International Working Conference
on Mining Software Repositories, MSR ’08, pages 19–22, New York,
NY, USA, 2008. ACM.

[19] T. Zimmermann, S. Kim, A. Zeller, and E. J. Whitehead, Jr. Mining
version archives for co-changed lines. In Proceedings of the 2006
International Workshop on Mining Software Repositories, MSR ’06,
pages 72–75, New York, NY, USA, 2006. ACM.

	Introduction
	Applications
	Background
	Approach
	Build History Graph
	Select Slicing Criterion
	Traverse History Graph
	Represent History Slice

	Motivating Example
	Preliminary Results and Future Work
	Acknowledgments
	References

