
CASI: Preventing Indirect Conflicts through a Live
Visualization

Francisco Servant, James A. Jones, André van der Hoek
University of California, Irvine

Department of Informatics
Irvine, CA, U.S.A. 92697-3440

{fservant, jajones, andre}@ics.uci.edu

ABSTRACT
Software development is a collaborative activity that may lead to
conflicts when changes are performed in parallel by several
developers. Direct conflicts arise when multiple developers make
changes in the same source code entity, and indirect conflicts are
produced when multiple developers make changes to source code
entities that depend on each other. Previous approaches of code
analysis either cannot predict all kinds of indirect conflicts, since
they can be caused by syntactic or semantic changes, or they
produce so much information as to make them virtually useless.
Workspace awareness techniques have been proposed to enhance
software configuration management systems by providing
developers with information about the activity that is being
performed by other developers. Most workspace awareness tools
detect direct conflicts while only some of them warn about
potential indirect conflicts. We propose a new approach to the
problem of indirect conflicts. Our tool CASI informs developers
of the changes that are taking place in a software project and the
source code entities influenced by them. We visualize this
influence together with directionality and severity information to
help developers decide whether a concrete situation represents an
indirect conflict. We introduce our approach, explain its
implementation, discuss its behavior on an example, and lay out
several steps that we will be taking to improve it in the future.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming environments –
Graphical environments. D.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement – version control.
D.2.9 [Software Engineering]: Management – software
configuration management.

General Terms
Algorithms, Reliability, Human Factors.

Keywords
Software configuration management, parallel work, conflicts,
workspace awareness, software visualization.

1. INTRODUCTION
One of the biggest challenges that the field of software
engineering faces today is collaboration. Most software projects
are built by teams of developers. One of the main tools that these
developers use in order to coordinate their work is Software
Configuration Management (SCM) [1,5]. Most of these systems
allow developers to make changes in parallel, but, as a result,
conflicts may occur.

Conflicts are classified in two groups [11]: direct conflicts and
indirect conflicts. Direct conflicts happen when two or more
developers modify the same version of a source code file at the
same time. When they decide to save their new version to the
repository, changes may overlap and need to be integrated. An
indirect conflict is an error that is produced as a result of two
changes that are performed in parallel by two different developers
in two different source code files. In this case, both developers
will be able to save their changes correctly, but the final result
might be a system that is inconsistent. These inconsistencies could
lead to compilation errors, build errors, runtime errors, or just
erroneous situations in which they do not necessarily receive an
error message, even though the program exhibits an unexpected
behavior.

Conflicts are typically detected after they have been introduced.
Direct conflicts are normally detected when a developer decides
to save (check in) the changes to the repository. In the case of
indirect conflicts, however, the amount of time that passes before
they are detected may vary. Sometimes they will be detected
when compiling the application, but other times they might go
unnoticed until the bug that they caused manifests itself in the
field. This is the reason why solving the problems introduced by
indirect conflicts can be a very complex and time consuming task,
especially if a long time has passed since they were introduced.

The central problem addressed in this paper is to work towards
providing developers with tool support through which they can
detect and perhaps even avoid altogether potential indirect
conflicts. The idea is that, if developers can detect a potential
conflict earlier, it may be much easier and less costly to resolve it
then, instead of at a much later time.

Several research projects address the issue of conflict detection by
raising awareness among developers of their activity [14]. These
approaches let developers put their activities in the context of
those of others, thus enabling them to proactively plan and
execute their activities in a more informed way in order to reduce
their interference with the activities of others. Most of these
approaches simply highlight changed source code entities [2,4,10]
and require developers to judge when a conflict is introduced.

© ACM 2010. This is the author's version of the work. It is posted here for your personal use. The definitive Version of Record was published as:
Francisco Servant, James A. Jones, and André van der Hoek. 2010. CASI: preventing indirect conflicts through a live visualization. In
Proceedings of the 2010 ICSE Workshop on Cooperative and Human Aspects of Software Engineering (CHASE '10). Association for
Computing Machinery, New York, NY, USA, 39–46. DOI: https://doi.org/10.1145/1833310.1833317

To date, awareness solutions either only detect direct conflicts
[2,4], only warn about indirect conflicts after they have been
introduced [13], focus on a limited set of potential indirect
conflicts [11,12], or provide no indication about how risky a
potential indirect conflict is [8]. In an attempt to fill these gaps,
we introduce our tool CASI (Conflict Awareness through Spheres
of Influence). A Sphere of Influence is a visualization that
contains the set of source code entities that may be influenced by
a set of changes, as well as other characteristics of that influence,
such as its severity. CASI dynamically shows developers the
source code entities that are being modified by any developer
together with their Spheres of Influence. Just like changes, the
Spheres of Influence evolve over time, and they normally grow as
developers make more changes.

Developers will be able to use the Spheres of Influence to help
them judge whether their changes might produce conflicts. This
way, they will have more information to plan their changes in
order to try to avoid conflicts. As an example, they may decide to
hold off changes in some areas of the code until they are not
influenced by other developers. They may also decide to apply
their changes in a different way to try to reduce the amount of
source code entities influenced by them.

At some point, the Spheres of Influence of several developers
might overlap. Overlaps inform developers of who might be
affecting their changes or whom they may be affecting with theirs.
Being aware of overlaps also helps developers to judge if an
indirect conflict may have been inserted. Once a developer
decides that there might be a conflict, the possible reactions may
vary, such as communicating with the conflicting developer via
IM or telephone, or checking the source code themselves.

With our approach presented here, we contribute a new concept,
the Spheres of Influence, and a novel heuristic algorithm to
calculate them. Our algorithm is designed to warn about both
syntactic and semantic indirect conflicts, since it is inspired in
program slicing. We also contribute the notion of severity in the
Spheres of Influence. With the severity, we intend to provide an
indication of which source code entities are more likely to be
involved in an indirect conflict.

2. APPROACH
Previous awareness approaches, such as Palantír [2] or Jazz [4],
perform precise analyses over the source code to determine
conflicts. These approaches are ineffective when trying to warn
about indirect conflicts originating in semantic changes. Such
precise analyses can find mismatching definitions and uses of
APIs, but they cannot predict, for instance, run-time problems by
only analyzing (partial and parallel) code changes.

Thus, we provide a different kind of solution. The goal of CASI is
to help developers detect situations that may turn into conflicts as
early as possible by providing them with an advanced
visualization of the activity of other developers. Consequently,
they will be able to react by taking the necessary proactive steps
to prevent these conflicts from being introduced. Our assumption
is that, even though developers would periodically monitor this
visualization and at times undertake action to reduce the number
of potential indirect conflicts, this proactive work involves less
effort than resolving indirect conflicts after their introduction and
discovery.

This process is represented in action for two developers in Figure
1. It cycles through four steps: code changes (performed by
developers), analysis (computed by our tool), visualization
(rendered by our tool), and planning (performed by developers).
These steps are described in more detail in the sections below.

2.1 Changes
CASI detects live code changes as they are being made in the
developers’ environments. Capturing changes some time after they
happen would result in a reduction of the developers’ ability to
take proactive decisions about how to perform their changes.
Therefore, the immediacy of this detection is a key factor for our
approach.

CASI monitors changes in fields, methods, classes, and interfaces.
For simplicity, we use the term source code entity to designate
any of these. The addition, deletion, or modification of a source
code entity is considered a change. In addition, we consider that a
source code entity is modified when its set of relationships with
other source code entities changes.

2.2 Analysis
To approximate where indirect conflicts may occur, our analysis
informs developers of how “far” the influence of their changes
reaches in the code base, using the changed source code entities as
the seed. Program slicing [16] is an approach that can be used for
such a purpose; however, slices generally cover vast swaths of
code and do not provide any degree of distance or strength of the
dependency. We want the influence of code changes to taper off
as artifacts are further away from them in the dependency chain.
Additionally, we want this information to help developers in
judging the risk of a situation to turn into an indirect conflict by
giving them some indication of severity or distance from the
change.

CASI’s technique operates over the entity-relationship metamodel
used by dependency slicing [3], which provides the set of
dependencies among all source code entities, including transitive
ones. We use the parsing algorithm from dependency slicing to
get the set of source code entities and relationships that represent
the source code of the application. Then, we traverse this
dependency graph in order to obtain all the reachable source code
entities from each changed source code entity. Each reachable
source code entity is an influenced source code entity as a result of
the influence that the changed source code entity holds over it.
When a source code entity is changed, it produces two kinds of
influence: forward influence over source code entities that it uses,
and backward influence over source code entities that use it.

Visualization

Analysis

Planning

Changes

Analysis

Planning

Changes

Figure 1. Approach of CASI.

Developer 1 Developer 2

Therefore, our algorithm traverses the dependency graph in both
directions in order to calculate these two different sets of
influenced source code entities.

Our algorithm also assigns a heuristic value of severity to each
influenced source code entity, with which we intend to express a
relative likelihood of a source code entity to be involved in an
indirect conflict. We assume that the influence of a change
declines as the influenced source code entity is further from the
change in the dependency chain. Thus, the severity value is driven
by the distance from the influenced source code entity to the
changed source code entity and by the kinds of relationships that
form the chain of dependencies between them.

During the traversal of the dependency graph, the changed source
code entity is assigned a severity of 1.0, and every time that we
visit a new one, we assign it a severity value s = s’ · w, where s’ is
the severity of the previous source code entity and w is the weight
of the relationship between them. Weights take values in the range
0.0 – 1.0, and different weights are considered for different
relationships. As an example, we assign higher weight to CALLS
relationships than to OF TYPE relationships because we consider
that the likelihood of being involved in an indirect conflict is
higher for CALLS relationships than for OF TYPE relationships.
These weights are currently based on our intuition, but are also
configurable; they are the subject of our ongoing research.

Commonly, a source code entity is influenced by many changes or
by the same change along multiple paths. In such cases, all the
severity values along each path are combined to calculate the
severity of that influenced source code entity. We combine the
severity values at a target source code entity along each path to
recognize that influence traversing along multiple paths may be
more likely to affect the target than a source code entity reachable
by only one path. Thus, whenever a source code entity is
influenced by two different changes, we assign it a severity value
s = (a + b – (a · b)), where a and b are the two different severity
values that would correspond to the influence of each path. If
more than two changes influence the same source code entity in
the same direction, we first calculate the combined severity for the
first two, and then iteratively apply the formula to the combined
severity until all the severities have been processed.
To demonstrate how severity propagates in a program, consider
the example depicted in Figure 2. The changed method
(represented as the leftmost node) defines a field’s value,
(represented as the topmost node) which is of the type of the
rightmost node. The changed method calls another method (the
bottommost node) that throws an exception of the type of the
rightmost node. The weight and type of each of the relationships
joining the source code entities is depicted on the edge labels. The
severity of the changed method is assigned a value of 1.0. Along
the top path, the assigned field is given a severity value of
1.0·0.7=0.7. The called method is given a severity value of
1.0·0.8=0.8. The severity value of the class is calculated as
(0.7·0.4) + (0.8·0.1) – (0.7·0.4)·(0.8·0.1) = 0.3376.

In order to provide an up-to-date visualization, our algorithm is
executed dynamically to update the set of influenced source code
entities as developers make changes.

2.3 Visualization
An important aspect of this kind of solution is that it has to be
shown in a clear and non-intrusive way, so that it does not
represent a distraction from the coding activity, and it is only

invasive when it is relevant. In order to fulfill this requirement, we
implemented CASI as a plug-in for the Lighthouse project [2].
Lighthouse, itself, is a plug-in for Eclipse [7] that shows the
Emerging Design: “an up-to-date representation of the design as
it exists in the code” [15]. This view is represented in a separate
window as a UML-like class diagram, which is annotated with
events in the source code entities that have changed. Within the
class nodes, each change event is represented to the right of the
affected source code entity by a change icon (a plus sign for
addition, a minus sign for deletion and a triangle for modification)
together with the name of the developer that produced it. The
Emerging Design is dynamically updated as developers make
changes. At any particular moment, the Emerging Design contains
all the changes that have not yet been transferred to all the
developers’ workspaces, i.e., if a developer makes some changes
and checks them in, these changes will not be cleared from the
visualization of the Emerging Design until all developers have
checked them out from the repository. Thus, the Emerging Design
represents the union of all the differences between all developers’
workspaces.

CASI’s visualization enhances Lighthouse with influence events,
and it also dynamically updates as developers make changes. An
influence event signals an influenced source code entity. These
events are represented to the right of the influenced source code
entity by a double arrow icon together with the name of the
developer that produced the influence. A double arrow pointing
right represents forward influence and a double arrow pointing
left represents backward influence. The color of the double arrow
informs developers of the severity of the influence, ranging from
yellow to red. Yellow corresponds to minimum severity and red
corresponds to maximum severity. A developer’s Sphere of
Influence is composed of the set of all the influence events
(forward and backward) that correspond to that developer.
Examples of CASI’s visualization are portrayed in Figures 4 – 6.
The direction of the arrows was chosen to ease the interpretation
of the visualization. Thus, if a developer named Alice produces
forward influence over the method getScreen(), the visualization
displays “getScreen() >> Alice”, which could be read as “If you
change getScreen(), Alice may be affected”. However, if a
developer named Bob produces backward influence over the
method execute(), the visualization displays “execute() << Bob”,
which could be read as “Bob’s changes may be affecting the

Figure 2. Severity propagation among source code entities.
The calculated severity is shown in the nodes.

method execute()”. These examples can be seen in Figure 3,
which is zoomed in from Figure 6 and contains influence events
with different directions and severities.

The influence, both forward and backward, is displayed for each
developer so that they can see both whom they may be affecting
and who may be affecting them. This way, both affected parties
will have a chance to react in the event of an indirect conflict. We
expect developers to normally focus their attention on the source
code entities that they are editing and the close ones surrounding
them. In such a case, they can see at a glance whether or not other
developers’ Spheres of Influence extend over their changes.

2.4 Planning
CASI enables developers to make intelligent decisions about how
to implement their changes. Initially, their own Sphere of
Influence can help them to better understand what parts of the
code may be affected by their changes. This gives them hints
about which source code entities they might want to review before
checking in their changes in order to make sure that they will
behave correctly after their changes have been performed. They
can also use the severity indicator to decide which of the source
code entities in their Sphere of Influence are worth reviewing.

Additionally, the Spheres of Influence corresponding to other
developers can be used as a planning device. Developers often
know where they will be making changes. The areas of the code
that they intend to change may be included in the Spheres of
Influence of others. If they are, developers can interpret this
visualization as a risk of those areas actually being involved in an
indirect conflict should they be modified. In this situation,
developers may decide to: (1) hold off on their changes until the
other developers have completed and checked in their changes, (2)
communicate with the potentially conflicting other developers to
avoid conflicts, or (3) perform the changes despite the warning.
The severity indicator of the influenced source code entities is
intended to help them make this decision.

If the number of dependencies involved in a set of changes is
high, the corresponding Sphere of Influence can grow very large.
A large size of the Spheres of Influence serves as a warning of
high chances of them to overlap, which increases the risk of an
indirect conflict being inserted. In this case, developers may
decide to apply their changes in a different way. Consequently,
they may reduce the number of source code entities influenced by
their changes and/or the severity value assigned to them.

The Spheres of Influence may eventually overlap. Even though
overlaps do not always signal the introduction of an indirect

conflict, their presence should encourage developers to take action
and talk to each other in order to understand their changes and
whether they are compatible. This way, they may be able to avoid
an indirect conflict even before it is introduced.

As different kinds of overlaps may arise, developers can use the
severity and direction of the overlapping influences to judge how
high the risk of indirect conflict is and whether communicating
with others is necessary. In general, a higher severity in the
overlapping influences denotes a higher risk of indirect conflict.
An overlap of several backward influences over the same source
code entity also increases the risk of that source code entity being
involved in an indirect conflict if it is modified. An overlap of
several forward influences over the same source code entity tells
which developers would be involved in a potential indirect
conflict if that source code entity were modified. Finally, the
overlap of a forward influence with a backward influence means
that the two developers involved in the overlap have made
changes in areas of the source code that were part of the Sphere of
Influence of the other developer. This means that somewhere in
the visualization, there is an overlap between a developer’s
change and the other developer’s Sphere of Influence. This is the
most serious overlap and the one to which we expect developers
to be most likely to react.

3. EXAMPLE
We tested CASI in some situations in which we knew that an
indirect conflict was being introduced. These scenarios affected a
small code base: the ATM example taken from a programming
book [6]. In this section, we describe one of the ATM change
scenarios step by step to show how CASI and its visualization
provide guidance to developers.

In this example, developers Alice and Bob make changes in
parallel over the source code of the ATM application. This code
base is small enough for our example to be simple to understand,
but of enough size for the visualization of CASI to be
representative. The structure of the source code can be seen in
Figure 4. The ATMCaseStudy class contains the main method of
the application, which executes methods in the ATM class. The
Transaction class contains the common functionality for all
transactions, and BalanceInquiry and Withdrawal inherit from it.
Withdrawal uses the CashDispenser class to execute its
functionality. Both transactions BalanceInquiry and Withdrawal,
as well as their parent class Transaction use the BankDatabase
class. BankDatabase contains a list of all the accounts, each of
which is represented by the Account class. Finally, the Keypad
and Screen classes contain the input and output functionality of
the application.

Alice’s task is to modify the application so that the balance
information is stored in cents instead of dollars. Currently, the
balance information is stored in the availableBalance and
totalBalance fields inside the Account class. These fields
represent the dollar amount with decimals as a value of type
double. The Java documentation recommends using a different
type of variable for currency [9], so she plans to change the type
of these variables to long.

Bob is in charge of adding a new transaction to allow deposits. He
plans on creating a DepositSlot class for the functionality of the
deposit slot, and a Deposit class for the functionality of the
transaction. Thus, Deposit will inherit from Transaction. Since
Bob is not aware of Alice’s plans, he expects the balance stored in

Figure 3. Different types of influence in CASI's visualization.

the Account class to be represented by a dollar amount with
decimals.

Both Alice and Bob check out the same version of the source code
and make their changes in parallel. When they finish their
changes, they compile and test the version in their workspace,
which works correctly. Because the changes made by Alice affect
different files than the changes made by Bob, the SCM system
will allow both of them to check in their changes without any
warning. However, there is an indirect conflict between Alice’s
changes in the Account class and Bob’s changes in the Deposit
class. This indirect conflict introduces an error in the version in
the repository. The Deposit transaction implemented by Bob will
credit the dollar amount in the corresponding account, but it will
be interpreted as cents by the rest of the application. As a result,
all the deposit transactions will be accounted for 100 times less
than the actual amount of money deposited.

If Alice and Bob use CASI while making their changes, Alice will
see the visualization in Figure 4 when she starts coding. At the
beginning, she changes the type of Account.availableBalance and
Account.totalBalance from double to long. By company policies,
she is not allowed to change the signature of methods. So, she also
inserts a cast in the constructor for Account to convert the double
values received to long. At this point, CASI shows her “how far”
the influence of her changes reaches.

Alice’s next step is to review the rest of the source code to make
sure that all transactions consider the balance amount as cents

instead of dollars. CASI’s visualization can help her with this task
because all the source code entities involved in a dependency with
her changes belong to her Sphere of Influence. So, she reviews
BalanceInquiry.execute() and Withdrawal.execute(), and decides
to adapt them to the new way of measuring currency. As she starts
doing this, Bob also starts implementing his changes in parallel.
CASI then shows both Alice and Bob the visualization in Figure
5. As a result of Alice’s additional changes, her Sphere of
Influence has grown, and it covers a considerable percentage of
the source code entities of the application. This should serve as a
warning that the risk of indirect conflict will be high if other
developers start making changes.
Given that a large portion of the source code is influenced by
Alice, Bob might decide to hold off his changes until Alice
finishes hers. However, he decides to continue coding, hoping that
his Sphere of Influence will not overlap with Alice’s before one of
them finishes making changes. He starts by writing the
DepositSlot class, which is not yet used by any of the other source
code entities. As a result, Bob’s Sphere of Influence is also part of
CASI’s visualization, as can be seen in Figure 5.

Alice and Bob continue writing code. When Bob finishes
implementing the Deposit class, CASI shows both developers the
visualization in Figure 6. In this figure, all source code entities are
covered by either Alice’s or Bob’s Sphere of Influence. In fact, in
many of them, both Spheres of Influence overlap. This
visualization should encourage Alice and Bob to communicate
with each other in order to ensure that their changes are

Figure 4. Alice's Sphere of Influence after she starts making changes.

compatible. As a consequence of this communication, they would
be able to avoid the indirect conflict before checking in their
changes.
Normally, indeed, Bob and Alice should start talking before the
point reached in Figure 6. As they see that their Spheres of
Influence start to overlap more and more, it is a clear sign that
their changes might be incompatible. A simple check over IM or
per phone, or even in person, should alert them that their changes
are not compatible. In response, Bob can simply change the
assumption of dollar figures in his code, and the resulting work
will no longer lead to a problem. Note that, after Bob makes this
modification, the Spheres of Influence will still overlap, indicating
the close relationship between their changes.

4. DISCUSSION AND FUTURE WORK
Our example in Section 3 demonstrates the utility of CASI on a
small software system. We anticipate that a major theme of our
future research will be addressing the scalability of the approach
and visualization.

For a large source code base, we expect the Spheres of Influence
to potentially grow large. Because the size of the Sphere of
Influence for a developer is, in part, determined by the number of
dependencies involved in a change, a small change can still
produce a large Sphere of Influence if the changed code is
involved in many dependencies. If the Spheres of Influence grow

too quickly, they might overwhelm developers and cause them to
stop paying attention to the visualization.

We believe that filtering mechanisms could help mitigate the issue
of scalability. Some filters that we anticipate being useful are: (1)
limit the maximum distance between the changed and influenced
source code entity, (2) limit the maximum or minimum severity
displayed, (3) show only a developer’s changes and other
developer’s Spheres of Influence. In general, it might be useful to
allow developers to choose what they want to display for each
developer: changes, forward influence, backward influence, or a
combination of them.

We could apply filtering mechanisms to also help developers
identify the location of overlaps. We could show only overlaps, or
only some kinds of overlaps. Also, we might help developers find
the most dangerous overlaps through modifications of the
visualization or querying mechanisms integrated into the user
interface. In addition, we intend to experiment with new
visualization modes in which the graph layout can be arranged
such that the Spheres of Influence or their overlaps are more
apparent.

We are also considering entirely new and complimentary
visualizations of Spheres of Influence. Such visualizations may
abandon the UML class diagram — presenting the program and
the Spheres of Influence in a more scalable fashion. While such
visualizations are a current topic of discussion in our research
group, we imagine that they may present information in a way that

Figure 5. Alice's Sphere of Influence grows and Bob starts making his changes.

addressed other development tasks, such as providing overviews
of the current state of a project for project managers.

It would also be interesting to apply CASI in real world projects
and capture the history of changes and influence to try to learn
more about how indirect conflicts are produced. Additionally, we
plan to explore the use of CASI for test case selection. If we
consider test cases as part of the source code of the application,
the Spheres of Influence might indicate which test cases need to
be re-run after developers make changes. The selected test cases
would be those that were covered by the Spheres of Influence.

5. CONCLUSIONS
In this paper, we proposed a new kind of approach to the problem
of indirect conflicts. The traditional approaches rely on code
analysis and therefore cannot predict semantic indirect conflicts,
especially those that end up in run-time problems. Our approach is
based on a certain kind of awareness information that we call
Spheres of Influence. The Spheres of Influence show developers
which source code entities are influenced by their changes. This
information is dynamically broadcasted to developers as it
emerges while they make changes.

We implemented the visualization of the Spheres of Influence in
our tool CASI. This tool is different from traditional approaches
in its proactive nature. It is designed to warn developers of the
risk of indirect conflicts at an early moment as opposed to the
approach of other analysis tools, which analyze the changes to
detect indirect conflicts after they have been introduced.

We tested CASI in some small examples. However, we still need
to test it in more projects of different sizes and in real situations
with real developers. In our examples, CASI was generally
effective at showing whether the changed source code entities are
involved in many dependencies. When the Spheres of Influence
covered a large amount of source code entities, this was a warning
that the chances of overlap had increased. With this, the risk of
indirect conflict also increased.

However, there are still possibilities for simplifying CASI’s
visualization when the Spheres of Influence overlap. Developers
would be subject to a tedious process of investigating the overlap
of influenced source code entities if they tried to figure out which
overlaps pose the highest risk. We discussed some improvements
that might ameliorate this problem.

In the future, we plan to improve CASI for scaling to large
systems and to simplify its visualization, maybe even by
designing an entirely new one.

6. ACKNOWLEDGMENTS
This work was funded in part by Fundación Caja Madrid.

7. REFERENCES
[1] Apache Subversion. http://subversion.apache.org/

[2] I. Almeida Da Silva, P.H. Chen, C. van der Westhuizen,
R.M. Ripley, and A. van der Hoek, “Lighthouse:
coordination through emerging design,” Proceedings of the

Figure 6. Alice's and Bob's Spheres of Influence overlap.

2006 OOPSLA workshop on eclipse technology eXchange,
2006, p. 15.

[3] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An
internet-scale software repository,” Proceedings of the 2009
ICSE Workshop on Search-Driven Development-Users,
Infrastructure, Tools and Evaluation, 2009, pp. 1–4.

[4] Li-Te Cheng, S. Ross, and J. Patterson, “Jazzing up Eclipse
with collaborative tools,” Proceedings of the 2003 OOPSLA
workshop on eclipse technology eXchange, 2003, pp. 45–49.

[5] CVS - Open Source Version Control.
http://www.nongnu.org/cvs/

[6] P. Deitel and H. Deitel, Java™ how to program, 2006.
[7] Eclipse. http://www.eclipse.org

[8] R. Hegde and P. Dewan, “Connecting programming
environments to support ad-hoc collaboration,” 23rd
IEEE/ACM International Conference on Automated
Software Engineering, 2008. ASE 2008, 2008, pp. 178–187.

[9] Java Primitive Data Types.
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/dat
atypes.html

[10] B. Magnusson and U. Asklund, “Fine grained version control
of configurations in COOP/Orm,” Lecture Notes in
Computer Science, 1996, pp. 31–48.

[11] A. Sarma, G. Bortis, and A. van der Hoek, “Towards
supporting awareness of indirect conflicts across software
configuration management workspaces,” Proceedings of the
twenty-second IEEE/ACM international conference on
Automated software engineering, 2007, pp. 94–103.

[12] T. Schümmer and J.M. Haake, “Supporting distributed
software development by modes of collaboration,”
Proceedings of the seventh conference on European
Conference on Computer Supported Cooperative Work,
2001, p. 98.

[13] D. Shao, S. Khurshid, and D.E. Perry, “Evaluation of
semantic interference detection in parallel changes: an
exploratory experiment,” Compare, vol. 4, p. 5.

[14] M.A. Storey, D. Čubranić, and D.M. German, “On the use of
visualization to support awareness of human activities in
software development: a survey and a framework,”
Proceedings of the 2005 ACM symposium on Software
visualization, 2005, pp. 193–202.

[15] C. van der Westhuizen, P.H. Chen, and A. van der Hoek,
“Emerging design: new roles and uses for abstraction,”
Proceedings of the 2006 international workshop on Role of
abstraction in software engineering, 2006, p. 28.

[16] M. Weiser, “Program slicing,” Proceedings of the 5th
international conference on Software engineering, 1981, pp.
439–449.

